
Bakefile
Release 1.2.5.1

July 29, 2018

Contents

1 Introduction 3
1.1 Just Show Me How It Works . 3
1.2 Motivation . 3
1.3 The Bakefile Solution . 4

2 Tutorial 5
2.1 Hello, Bakefile . 5
2.2 Example Explained . 6
2.3 Customizing Your Project . 6
2.4 Advanced Stuff . 8

3 Language reference 11
3.1 Statements, blocks, literals etc. 11
3.2 Values, types and literals . 11
3.3 Paths . 12
3.4 Variables and properties . 13
3.5 Targets . 14
3.6 Templates . 15
3.7 Conditional statements . 16
3.8 Build configurations . 17
3.9 Build settings . 18
3.10 Submodules . 19
3.11 Importing other files . 19
3.12 Version checking . 20
3.13 Loading plugins . 20
3.14 Comments . 20

4 Reference documentation 23
4.1 Global project properties . 23
4.2 Module properties . 24
4.3 Setting properties . 26
4.4 Toolsets . 26
4.5 Targets . 34

5 Extending and developing Bakefile 65
5.1 Writing Bakefile plugins . 65
5.2 Reference . 65

i

6 Glossary 101

7 Indices and tables 103

Python Module Index 105

ii

Bakefile, Release 1.2.5.1

Contents:

Contents 1

Bakefile, Release 1.2.5.1

2 Contents

CHAPTER 1

Introduction

1.1 Just Show Me How It Works

If you already have an idea of what Bakefile does, please feel free to skip directly to the Tutorial.

1.2 Motivation

Almost any introductory C or C++ book starts with presenting a version of “Hello, world” program. Some of them
also show how to compile the program, although often enough the reader is advised to refer to the documentation of
the compiler to learn how to do it. And almost none of the books or tutorials address the issue of how can the program
be compiled not in a single environment and with a single compiler but on several different platforms or, perhaps, with
different compilers on the same platform. And there is a good reason for avoiding discussing this: surprisingly, 40
years after the invention of C programming language, there is still no satisfactory solution to this problem.

Before discussing how Bakefile helps to address it, let’s briefly mention the two usual anti-solutions. The first one
of them is to naively separately write build scripts, make files or projects for each of the environments used. While
there is no problem with this approach as long as a single such environment is used, accurately propagating changes
to one of the files to all the other ones becomes bothersome even when there are only two of them and, in practice,
the divergences almost inevitably appear. For a cross-platform project, targeting many different platform, this quickly
becomes a serious maintenance burden. But even for projects used under a single platform, keeping different versions
of the project files can be annoying (a typical example is that of Microsoft Visual C++ compiler which has changed its
project file format with each and every one of its last 5 releases).

The problems of this naive approach have resulted in creation of a huge number of cross-platform build tools. This
manual is too short to discuss the cons and pros of each of them, but they all share one fundamental weakness that
makes us classify them all as an anti-solution: the use of such tool replaces the use of the normal tools used for
software development under any given platform. As anybody who has tried to convince a seasoned Unix programmer
to switch to using Xcode instead of make, a Windows developer to use make instead of Microsoft Visual Studio or
someone used to work with Xcode to live without it can attest, this can be a bad idea with effects ranging from the
drop of participation in an Open Source project to poisoning the atmosphere in the office in a company one.

3

Bakefile, Release 1.2.5.1

1.3 The Bakefile Solution

The solution proposed by Bakefile allows to combine the use of native development tools with the lack of maintenance
headaches due to having to modify the files for each of the tool chains manually. Bakefile is a meta-make tool which
does not replace the normal make program or IDE used for building the project but simply generates the input files for
it from a unique meta-makefile which we call a “bakefile”.

It is important to notice that the make and project files created by bakefile*0 are as similar to the files with the same
functionality created by hand as possible, i.e. are easy to understand for anybody familiar with the underlying tool.
These files still should not be modified directly but, in a pinch, this can be done – and is as easy to do as with manually
crafted versions.

This need to restrict modifications to the bakefiles themselves and avoid modifying the files generated from them does
require some discipline but this is the smallest possible price to pay for solving the problem of how to let developers
use their favourite tool chain under all platforms without having to manually ensure the synchronization between all
of them.

0 This process is, inevitably, called “baking”.

4 Chapter 1. Introduction

CHAPTER 2

Tutorial

2.1 Hello, Bakefile

After complaining about the lack of examples of how “Hello, World” program can be built in a portable way in the
introduction, we’d be amiss to not provide an example of doing this here. So, assuming the text of the program is in
the file hello.c, here is the corresponding hello.bkl bakefile to build it:

toolsets = gnu vs2010;
program hello {

sources { hello.cpp } // could also have been "hello.c"
}

To produce something interesting from it we need to run bakefile simply passing it this file name as argument:

$ bkl hello.bkl

or maybe:

C:\> bkl hello.bkl

In the grand tradition of Unix tools, Bakefile doesn’t produce any output after running successfully. If this is too
closemouthed for your taste, you can try adding -v option which will indicate all the files read and, more importantly,
written by the tool. Using this option or just examining the directory you ran Bakefile in you can see that it created
several new files.

In our case, they will be GNUmakefile for “gnu” toolset (the one using standard GNU development tools) or
hello.sln and its supporting files for “vs2010” toolset (Microsoft Visual Studio 2010) one. These files then can be
used to build the project in the usual way, i.e. by running “make” or opening the file in the IDE.

Please check that you can run Bakefile and generate a working make or project file appropriate for your platform
(“gnu” for Unix systems including OS X, “vs2010” for Microsoft Windows ones).

5

Bakefile, Release 1.2.5.1

2.2 Example Explained

Bakefile input language is C-like, with braces and semicolons playing their usual roles. Additionally, both C and C++
style comments can be used. It however also borrows some simple and uncontroversial elements*0 of make syntax.
Notably, there is no need to quote literal strings and, because of this, Bakefile variables – such as toolsets above –
need to be explicitly dereferenced using make-file $(toolsets) expression when needed.

Knowing this we can see that the first line of the hello bakefile above simply sets a variable toolsets to the list of
two strings. This variable is special for Bakefile – and hence is called “property” rather than a simple “variable” – and
indicates which make or project files should be generated when it is ran. It must be present in all bakefiles as no output
would be created without it.

The next block – program hello { ... } – defines an executable target with the name “hello”. All the decla-
rations until the closing bracket affect this target only. In this simple example the only thing that we have here is the
definition of the sources which should be compiled to build the target. Source files can be of any type but currently
Bakefile only handles C (extension .c) and C++ (extension .cpp, .cxx or .C) files automatically and custom com-
pilation rules need to be defined for the other ones. In any real project there are going to be more than one source file,
of course. In this case they can just be listed all together inside the same block like this:

sources {
foo.cpp subdir/bar.cpp
// Not necessarily on the same line
baz.cpp

}

or they can be separated in several blocks:

sources { foo.cpp }
sources { subdir/bar.cpp }
sources { baz.cpp }

The two fragments have exactly the same meaning.

2.3 Customizing Your Project

2.3.1 Compilation And Linking Options

A realistic project needs to specify not only the list of files to compile but also the options to use for compiling them.
The most common options needed for C/C++ programs are the include paths allowing to find the header file used and
the preprocessor definitions and Bakefile provides convenient way to set both of them by assigning to defines and
includedirs properties inside a target:

program hello {
defines = FOO "DEBUG=1"; // Quotes are needed if value is given
includedirs = ../include;
...

}

These properties can be set more than once but each subsequent assignment overrides the previous value which is not
particular useful. It can be more helpful to append another value to the property instead, for example:

0 So no meaningful tabulations or backslashes for line continuation.

6 Chapter 2. Tutorial

Bakefile, Release 1.2.5.1

program hello {
defines = FOO;
...
defines += BAR;
...
defines += "VERSION=17";
defines += "VERSION_STR=\"v17\"";

}

will define “FOO” and “BAR” symbols (without value) as well as “VERSION” with the value of 17 and “VER-
SION_STR” with the value as a C string during compilation. This is still not very exciting as all these values could
have been set at once, but the possibility of conditional assignment is more interesting:

program hello {
if ($(toolset) == gnu)

defines += LINUX;
if ($(toolset) == vs2010)

defines += MSW;
}

would define LINUX only for makefile-based build and MSW for the project files.

While defines and includedirs are usually enough to cover 90% of your needs, sometimes some other compiler
options may need to be specified and the compiler-options property can be used for this: you can simply any
options you want to be passed to C or C++ compiler into it. If you need to be more precise and only use some options
with a particular compiler in a project using more than one of them, you can also use c-compiler-options or
cxx-compiler-options.

One aspect of using these properties is that different compilers use different format for their options, so it’s usually
impossible to use the same value for all of them. Moreover, sometimes you may actually need to use custom options
for a single toolset only. This can be done by explicitly testing for the toolset being used. For example, to use C++ 11
features with GNU compiler you could do

if ($(toolset) == gnu)
cxx-compiler-options = "-std=c++11"

Similarly, any non trivial project usually links with some external libraries. To specify these libraries, you need to
assign to the libs property and also may need to set libdirs if these libraries are not present in the standard search
path:

program hello {
libdirs = ../3rdparty/somelib/lib;
libs = somelib;

}

Notice that you only need to do the latter if the libraries are not built as part of the same project, otherwise you should
simply list them as dependencies as shown in the next section.

And if you need to use any other linker option you can specify it using link-options property. As with compiler
options, you would normally test for the toolkit before doing it as linker options are toolset-specific.

2.3.2 Multiple Modules

Larger projects typically consist in more than just a single executable but of several of them and some libraries. The
same bakefile can contain definitions of all of them:

2.3. Customizing Your Project 7

Bakefile, Release 1.2.5.1

library network {
sources { ... }

}

library gui {
sources { ... }

}

program main {
deps = network gui;
...

}

In this case, the libraries will be built before the main executable and will be linked with it. Bakefile is smart about
linking and if a library has dependencies of its own, these will be linked in as well.

Alternatively, you can define each library or executable in its own bakefile. This is especially convenient if each of
them is built in a separate directory. In this case you can use submodule keyword to include the sub-bakefiles.

2.3.3 Assorted Other Options

Under Windows, console and GUI programs are compiled differently. By default, Bakefile builds console executables.
You can change this by setting the win32-subsystem property to windows.

Another Windows-specific peculiarity is that standard C run-time library headers as well as Platform SDK headers are
compiled differently depending on whether _UNICODE and UNICODE macros, respectively, are defined or not. By
default, Bakefile does define these macros but you can set win32-unicode target property to false to prevent it
from doing it.

2.4 Advanced Stuff

2.4.1 Generated Source Files

Bakefile supports custom compilation steps; this can be used both for files generated with some script and for compi-
lation of unsupported file types.

Compiling a custom file is as simple as setting the compile-commands property on it to the command (or several
commands) to compile the file, outputs property with the list of created files and optionally filling in additional
dependencies:

toolsets = gnu vs2010;
program hello {

sources { hello.cpp mygen.cpp mygen.desc }

mygen.desc::compile-commands = "tools/generator.py -o %(out) %(in)";
mygen.desc::outputs = mygen.cpp;
// add dependency on the generator script:
mygen.desc::dependencies = tools/generator.py;

}

Notice that the generated files listed in outputs must be included in sources or headers section as well.

Additionally, any number of other dependency files can be added to the dependencies list. The command uses two
placeholders, %(in) and %(out), that are replaced with the name of the source file (mygen.desc in our example)

8 Chapter 2. Tutorial

Bakefile, Release 1.2.5.1

and outputs respectively; both placeholders are optional. If there are multiple output files, %(out0), %(out1),
. . . placeholders can be used to access individual items in the list.

Perhaps a better would be to demonstrate how to use this to generate a grammar parser with Bison:

sources {
main.cpp
parser.ypp // Bison grammar file
parser.cpp parser.hpp // generated C++ parser

}

parser.ypp::compile-commands = "bison -o %(out0) %(in)"
parser.ypp::outputs = parser.cpp parser.hpp;

2.4. Advanced Stuff 9

Bakefile, Release 1.2.5.1

10 Chapter 2. Tutorial

CHAPTER 3

Language reference

3.1 Statements, blocks, literals etc.

Statements in Bakefile are separated by semicolon (;) and code blocks are marked up in with { and }, as in C. See an
example:

toolsets = gnu vs2010;
program hello {

sources { hello.cpp }
}

In particular, expressions may span multiple lines without the need to escape newlines or enclose the expression in
parenthesis:

os_files = foo.cpp
bar.cpp
;

3.2 Values, types and literals

Similarly to the make syntax, quotes around literals are optional – anything not a keyword or special character or
otherwise specially marked is a literal; specifically, a string literal.

Quoting is only needed when the literal contains whitespace or special characters such as = or quotes. Quoted strings
are enclosed between " (double quote) or ' (single quote) characters and may contain any characters except for the
quotes. Additionally, backslash (\) can be used inside quoted strings to escape any character.1

The two kinds of quoting differ:

1 A string literal containing quotes can therefore be written as, say, "VERSION=\"1.2\""; backslashes must be escaped as double backslashes
("\\").

11

Bakefile, Release 1.2.5.1

1. Double-quoted strings are interpolated. That is, variable references using $(...) (see below) are recognized
and evaluated. If you want to use $ as a literal, you must escape it (\$).

2. Single-quoted strings are literal, $ doesn’t have any special meaning and is treated as any other character.

Values in Bakefile are typed: properties have types associated with them and only values that are valid for that type
can be assigned to them. The language isn’t strongly-typed, though: conversions are performed whenever needed
and possible, variables are untyped by default. Type checking primarily shows up when validating values assigned to
properties.

The basic types are:

1. Boolean properties can be assigned the result of a boolean expression or one of the true or false literals.

2. Strings. Enough said.

3. Lists are items delimited with whitespace. Lists are typed and the items must all be of the same type. In the
reference documentation, list types are described as “list of string”, “list of path” etc.

4. Paths are file or directory paths and are described in more detail in the next section.

5. IDs are identifiers of targets.

6. Enums are used for properties where only a few possible values exist; the property cannot be set to anything
other than one of the listed strings.

7. AnyType is the pseudo-type used for untyped variables or expressions with undetermined type.

3.3 Paths

File paths is a type that deserves more explanation. They are arguably the most important element in makefiles and
project files both and any incorrectness in them would cause breakage.

All paths in bakefiles must be written using a notation similar to the Unix one, using / as the separator, and are always
relative. By default, if you don’t say otherwise and write the path as a normal Unix path (e.g. src/main.cpp),
it’s relative to the source directory (or srcdir for short). Srcdir is the implicitly assumed directory for the input files
specified using relative paths. By default, it is the directory containing the bakefile itself but it can be changed as
described below. Note that this may be – and often is – different from the location where the generated output files are
written to.

This is usually the most convenient choice, but it’s sometimes not sufficient. For such situations, Bakefile has the
ability to anchor paths under a different root. This is done by adding a prefix of the form of @<anchor>/ in front of
the path. The following anchors are recognized:

1. @srcdir, as described above.

2. @top_srcdir is the top level source directory, i.e. srcdir of the top-most bakefile of the project. This is only
different from @srcdir if this bakefile was included from another one as a submodule.

3. @builddir is the directory where build files of the current target are placed. Note that this is not where the
generated makefiles or projects go either. It’s often a dedicated directory just for the build artifacts and typically
depends on make-time configuration. Visual Studio, for example, puts build files into Debug/ and Release/
subdirectories depending on the configuration selected. @builddir points to these directories.

Here are some examples showing common uses for the anchors:

sources {
hello.cpp; // relative to srcdir
@builddir/generated_file.c;

(continues on next page)

12 Chapter 3. Language reference

Bakefile, Release 1.2.5.1

(continued from previous page)

}
includedirs += @top_srcdir/include;

3.3.1 Changing srcdir

As mentioned above, @srcdir can be changed if its default value is inconvenient, as, for example, is the case when
the bakefile itself is in a subdirectory of the source tree.

Take this for an example:

// build/bakefiles/foo.bkl
library foo {

includedirs += ../../include;
sources {

../../src/foo.cpp

../../src/bar.cpp
}

}

This can be made much nicer using scrdir:

// build/bakefiles/foo.bkl
srcdir ../..;

library foo {
includedirs += include;
sources {

src/foo.cpp
src/bar.cpp

}
}

The srcdir statement takes one argument, path to the new srcdir (relative to the location of the bakefile). It affects
all @srcdir-anchored paths, including implicitly anchored ones, i.e. those without any explicit anchor, in the module
(but not its submodules). Notably, (default) paths for generated files are also affected, because these too are relative to
@srcdir.

Notice that because it affects the interpretation of all path expressions in the file, it can only be used before any
assignments, target definitions etc. The only thing that can precede it is requires.

3.4 Variables and properties

Bakefile allows you to set arbitrary variables on any part of the model. Additionally, there are properties, which are
pre-defined variables with a set meaning. Syntactically, there’s no difference between the two. There’s semantical
difference in that the properties are usually typed and only values compatible with their type can be assigned to them.
For example, you cannot assign arbitrary string to a path property or overwrite a read-only property.

3.4.1 Setting variables

Variables don’t need to be declared; they are defined on first assignment. Assignment to variables is done in the usual
way:

3.4. Variables and properties 13

Bakefile, Release 1.2.5.1

variable = value;
// Lists can be appended to, too:
main_sources = foo.cpp;
main_sources += bar.cpp third.cpp;

Occasionally, it is useful to set variables on other objects, not just in the current scope. For example, you may want
to set per-file compilation flags, add custom build step for a particular source file or even modify a global variable.
Bakefile uses operator :: for this purpose, with semantics reminiscent of C++: any number of scopes delimited by ::
may precede the variable name, with leading :: indicating global (i.e. current module) scope. Here’s a simple example:

3.4.2 Referencing variables

Because literals aren’t quoted, variables are referenced using the make-like $(<varname>) syntax:

platform = windows;
sources { os/$(platform).cpp }

A shorthand form, where the brackets are omitted, is also allowed when such use is unambiguous:2

if ($toolset == gnu) { ... }

Note that the substitution isn’t done immediately. Instead, the reference is included in the object model of the bakefiles
and is dereferenced at a later stage, when generating makefile and project files. Sometimes, they are kept in the
generated files too.

This has two practical consequences:

1. It is possible to reference variables that are defined later in the bakefile without getting errors.

2. Definitions cannot be recursive, a variable must not reference itself. You cannot write this:

defines = $(defines) SOME_MORE

Use operator += instead:

defines += SOME_MORE

3.5 Targets

Target definition consists of three things: the type of the target (an executable, a library etc.), its ID (the name, which
usually corresponds to built file’s name, but doesn’t have to) and detailed specification of its properties:

type id {
property = value;
property = value;
...sources specification...
...more content...

}

(It’s a bit more complicated than that, the content may contain conditional statements too, but that’s the overall struc-
ture.)

2 A typical example of ambiguous use is in a concatenation. You can’t write $toolset.cpp because . is a valid part of a literal; it must be
written as $(toolset).cpp so that it’s clear which part is a variable name and which is a literal appended to the reference. For similar reasons,
the shorthand form cannot be used in double-quoted strings.

14 Chapter 3. Language reference

Bakefile, Release 1.2.5.1

3.5.1 Sources files

Source files are added to the target using the sources keyword, followed by the list of source files inside curly
brackets. Note the sources list may contain any valid expression; in particular, references to variables are permitted.

It’s possible to have multiple sources statements in the same target. Another use of sources appends the files to
the list of sources, it doesn’t overwrite it; the effect is the same as that of operator +=.

See an example:

program hello {
sources {

hello.cpp
utils.cpp

}

// add some more sources later:
sources { $(EXTRA_SOURCES) }

}

3.5.2 Headers

Syntax for headers specification is identical to the one used for source files, except that the headers keyword is used
instead. The difference between sources and headers is that the latter may be used outside of the target (e.g. a library
installs headers that are then used by users of the library).

3.6 Templates

It is often useful to share common settings or even code among multiple targets. This can be handled, to some degree,
by setting properties such as includedirs globally, but more flexibility is often needed.

Bakefile provides a convenient way of doing just that: templates. A template is a named block of code that is applied
and evaluated before target’s own body. In a way, it’s similar to C++ inheritance: targets correspond to derived classes
and templates would be abstract base classes in this analogy.

Templates can be derived from another template; both targets and templates can be based on more than one template.
They are applied in the order they are specified in, with base templates first and derived ones after them. Each template
in the inheritance chain is applied exactly once, i.e. if a target uses the same template two or more times, its successive
appearances are simply ignored.

Templates may contain any code that is valid inside target definition and may reference any variables defined in the
target.

The syntax is similar to C++ inheritance syntax:

template common_stuff {
defines += BUILDING;

}

template with_logging : common_stuff {
defines += "LOGGING_ID=\"$(id)\"";
libs += logging;

}

program hello : with_logging {
(continues on next page)

3.6. Templates 15

Bakefile, Release 1.2.5.1

(continued from previous page)

sources {
hello.cpp

}
}

Or equivalently:

template common_stuff {
defines += BUILDING;

}

template with_logging {
defines += "LOGGING_ID=\"$(id)\"";
libs += logging;

}

program hello : common_stuff, with_logging {
sources {

hello.cpp
}

}

3.7 Conditional statements

Any part of a bakefile may be enclosed in a conditional if statement. The syntax is similar to C/C++’s one:

defines = BUILD;
if ($(toolset) == gnu)

defines += LINUX;

In this example, the defines list will contain two items, [BUILD, LINUX] when generating makefiles for the
gnu toolset and only one item, BUILD, for other toolsets. The condition doesn’t have to be constant, it may reference
e.g. options, where the value isn’t known until make-time; Bakefile will correctly translate them into generated code.3

A long form with curly brackets is accepted as well; unlike the short form, this one can contain more than one
statement:

if ($(toolset) == gnu) {
defines += LINUX;
sources { os/linux.cpp }

}

Conditional statements may be nested, too:

if ($(build_tests)) {
program test {

sources { main.cpp }
if ($(toolset) == gnu) {

defines += LINUX;
sources { os/linux.cpp }

}
(continues on next page)

3 Although the syntax imposes few limits, it’s not always possible to generate makefiles or projects with complicated conditional content even
though the syntax supports it. In that case, Bakefile will exit with an explanatory error message.

16 Chapter 3. Language reference

Bakefile, Release 1.2.5.1

(continued from previous page)

}
}

The expression that specifies the condition uses C-style boolean operators: && for and, || for or, ! for not and ==
and != for equality and inequality tests respectively.

3.8 Build configurations

A feature common to many IDEs is support for different build configurations, i.e. for building the same project using
different compilation options. Bakefile generates the two standard “Debug” and “Release” configurations by default
for the toolsets that usually use them (currently “vs*”) and also supports the use of configurations with the makefile-
based toolsets by allowing to specify config=NameOfConfig on make command line, e.g.

$ make config=Debug
... files are compiled with "-g" option and without optimizations ...

Notice that configuration names shouldn’t be case-sensitive as config=debug is handled in the same way as
config=Debug in make-based toolsets.

In addition to these two standard configurations, it is also possible to define your own custom configurations, which is
especially useful for the project files which can’t be customized as easily as the makefiles at build time.

Here is a step by step guide to doing this. First, you need to define the new configuration. This is done by using a
configuration declaration in the global scope, i.e. outside of any target, e.g.:

configuration ExtraDebug : Debug {
}

The syntax for configuration definition is reminiscent of C++ class definition and, as could be expected, the identifier
after the colon is the name of the base configuration. The new configuration inherits the variables defined in its base
configuration.

Notice that all custom configurations must derive from another existing one, which can be either a standard “Debug”
or “Release” configuration or a previously defined another custom configuration.

Defining a configuration doesn’t do anything on its own, it also needs to be used by at least some targets. To do it, the
custom configuration name must be listed in an assignment to the special configurations variable:

configurations = Debug ExtraDebug Release;

This statement can appear either in the global scope, like above, in which case it affects all the targets, or inside one or
more targets, in which case the specified configuration is only used for these targets. So if you only wanted to enable
extra debugging for “hello” executable you could do

program hello {
configurations = Debug ExtraDebug Release;

}

However even if the configuration is present in the generated project files after doing all this, it is still not very
useful as no custom options are defined for it. To change this, you will usually also want to set some project options
conditionally depending on the configuration being used, e.g.:

program hello {
if ($(config) == ExtraDebug) {

(continues on next page)

3.8. Build configurations 17

Bakefile, Release 1.2.5.1

(continued from previous page)

defines += EXTRA_DEBUG;
}

}

config is a special variable automatically set by bakefile to the name of the current configuration and may be used
in conditional expressions as any other variable.

For simple cases like the above, testing config explicitly is usually all you need but in more complex situations it
might be preferable to define some variables inside the configuration definition and then test these variables instead.
Here is a complete example doing the same thing as the above snippets using this approach:

configuration ExtraDebug : Debug {
extra_debug = true;

}

configurations = Debug ExtraDebug Release;

program hello {
if ($(extra_debug)) {

defines += EXTRA_DEBUG;
}

}

Note: As mentioned above, it is often unnecessary (although still possible) to define configurations for the makefile-
based toolsets as it’s always possible to just write make CPPFLAGS=-DEXTRA_DEBUG instead of using an “Ex-
traDebug” configuration from the example above with them. If you want to avoid such unnnecessary configurations in
your makefiles, you could define them only conditionally, for example:

toolsets = gnu vs2010;
if ($toolset == vs2010 && $config == ExtraDebug)

defines += EXTRA_DEBUG;

would work as before in Visual Studio but would generate a simpler makefile.

3.9 Build settings

Sometimes, configurability provided by configurations is not enough and more flexible settings are required; e.g.
configurable paths to 3rdparty libraries, tools and so on. Bakefile handles this with settings: variable-like constructs
that are, unlike Bakefile variables, preserved in the generated output and can be modified by the user at make-time.

Settings are part of the object model and as such have a name and additional properties that affect their behavior.
Defining a setting is similar to defining a target:

setting JDK_HOME {
help = "Path to the JDK";
default = /opt/jdk;

}

Notice that the setting object has some properties. You will almost always want to set the two shown in the above
example. help is used to explain the setting to the user and default provides the default value to use if the user of the
makefile doesn’t specify anything else; both are optional. See Setting properties for the full list.

When you need to reference a setting, use the same syntax as when referencing variables:

18 Chapter 3. Language reference

Bakefile, Release 1.2.5.1

includedirs += $(JDK_HOME)/include;

In fact, settings also act as variables defined at the highest (project) level. This means that they can be assigned to as
well and some nice tricks are easily done:

setting LIBFOO_PATH {
help = "Path to the Foo library";
default = /opt/libfoo;

}

// On Windows, just use our own copy:
if ($toolset == vs2010)

LIBFOO_PATH = @top_srcdir/3rdparty/libfoo;

This removes the user setting for toolsets that don’t need it. Another handy use is to import some common code or use
a submodule with configurable settings and just hard-code their values when you don’t need the flexibility.

Note: Settings are currently only fully supported by makefiles, they are always replaced with their default values in
the project files.

3.10 Submodules

A bakefile file – a module – can include other modules as its children. The submodule keyword is used for that:

submodule samples/hello/hello.bkl;
submodule samples/advanced/adv.bkl;

They are useful for organizing larger projects into more manageable chunks, similarly to how makefiles are used with
recursive make. The submodules get their own makefiles (automatically invoked from the parent module’s makefile)
and a separate Visual Studio solution file is created for them by default as well. Typical uses include putting examples
or tests into their own modules.

Submodules may only be included at the top level and cannot be included conditionally (i.e. inside an if statement).

3.11 Importing other files

There’s one more way to organize source bakefiles in addition to submodules: direct import of another file’s content.
The syntax is similar to submodules one, using the import keyword:

// define variables, templates etc:
import common-defs.bkl;

program myapp { ... }

Import doesn’t change the layout of output files, unlike submodule. Instead, it directly includes the content of the
referenced file at the point of import. Think of it as a variation on C’s #include.

Imports help with organizing large bakefiles into more manageable files. You could, for example, put commonly used
variables or templates, files lists etc. into their own reusable files.

Notice that there are some important differences to #include:

3.10. Submodules 19

Bakefile, Release 1.2.5.1

1. A file is only imported once in the current scope, further imports are ignored. Specifically:

(a) Second import of foo.bkl from the same module is ignored.

(b) Import of foo.bkl from a submodule is ignored if it was already imported into its parent (or any of its
ancestors).

(c) If two sibling submodules both import foo.bkl and none of their ancestors does, then the file is imported
into both. That’s because their local scopes are independent of each other, so it isn’t regarded as duplicate
import.

2. An imported file may contain templates or configurations definitions and be included repeatedly (in the (1c)
case above). This would normally result in errors, but Bakefile recognizes imported duplicates as identical and
handles them gracefully.

The import keyword can only be included at the top level and cannot be done conditionally (i.e. inside an if
statement).

3.12 Version checking

If a bakefile depends on features (or even syntax) not available in older versions, it is possible to declare this depen-
dency using the requires keyword.

// Feature XYZ was added in Bakefile 1.1:
requires 1.1;

This statement causes fatal error if Bakefile version is older than the specified one.

3.13 Loading plugins

Standard Bakefile plugins are loaded automatically. But sometimes a custom plugin needed only for a specific project
is needed and such plugins must be loaded explicitly, using the plugin keyword:

plugin my_compiler.py;

Its argument is a path to a valid Python file that will be loaded into the bkl.plugins module. You can also use full
name of the module to make it clear the file is a Bakefile plugin:

plugin bkl.plugins.my_compiler.py;

See the Writing Bakefile plugins chapter for more information about plugins.

3.14 Comments

Bakefile uses C-style comments, in both the single-line and multi-line variants. Single-line comments look like this:

// we only generate code for GNU format for now
toolsets = gnu;

Multi-line comments can span several lines:

20 Chapter 3. Language reference

Bakefile, Release 1.2.5.1

/*
We only generate code for GNU format for now.
This will change later, when we add Visual C++ support.

*/
toolsets = gnu;

They can also be included in an expression:

program hello {
sources { hello.c /*main() impl*/ lib.c }

}

3.14. Comments 21

Bakefile, Release 1.2.5.1

22 Chapter 3. Language reference

CHAPTER 4

Reference documentation

4.1 Global project properties

4.1.1 Properties

toolset (type: toolset)

The toolset makefiles or projects are being generated for. This property is set by Bakefile and can be used
for performing toolset-specific tasks or modifications.

Read-only property

Allowed values: “gnu”, “gnu-osx”, “gnu-suncc”, “vs2003”, “vs2005”, “vs2008”, “vs2010”, “vs2012”,
“vs2013”

Inheritable from parent: no

config (type: string)

Current configuration.

This property is set by Bakefile and can be used for performing per-configuration modifica-
tions. The value is one of the configurations values specified for the target.

See Build configurations for more information.

Read-only property

Inheritable from parent: no

arch (type: string)

Current architecture.

This property is set by Bakefile and can be used for performing per-architecture modifications
(if the toolset supports it, which currently only Visual Studio does). The value is one of the
archs values specified for the target.

Read-only property

23

Bakefile, Release 1.2.5.1

Inheritable from parent: no

4.2 Module properties

4.2.1 Properties

toolsets (type: list of toolsets)

List of toolsets to generate makefiles/projects for.

Default: empty

Allowed values: “gnu”, “gnu-osx”, “gnu-suncc”, “vs2003”, “vs2005”, “vs2008”, “vs2010”, “vs2012”,
“vs2013”

Inheritable from parent: yes

vs2008.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2008.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: True

Inheritable from parent: no

gnu.makefile (type: path)

Name of output file for module’s makefile.

Only for toolsets: GNU toolchain for Unix systems (gnu)

Default: GNUmakefile

Inheritable from parent: no

vs2005.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2005.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: True

24 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Inheritable from parent: no

gnu-suncc.makefile (type: path)

Name of output file for module’s makefile.

Only for toolsets: GNU toolchain for Sun CC compiler (gnu-suncc)

Default: Makefile.suncc

Inheritable from parent: no

vs2012.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2012.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: True

Inheritable from parent: no

vs2013.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2013.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: True

Inheritable from parent: no

vs2003.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2003.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2003 (vs2003)

4.2. Module properties 25

Bakefile, Release 1.2.5.1

Default: True

Inheritable from parent: no

vs2010.solutionfile (type: path)

File name of the solution file for the module.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2010.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: True

Inheritable from parent: no

gnu-osx.makefile (type: path)

Name of output file for module’s makefile.

Only for toolsets: GNU toolchain for OS X (gnu-osx)

Default: Makefile.osx

Inheritable from parent: no

4.3 Setting properties

4.3.1 Properties

help (type: string)

Documentation for the setting. This will be used in the generated output to explain the setting
to the user, if supported by the toolset.

Default: null

Inheritable from parent: no

default (type: any)

Default value of the setting, if any.

Default: null

Inheritable from parent: no

4.4 Toolsets

4.4.1 GNU toolchain for Unix systems (gnu)

GNU toolchain for Unix systems.

26 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

This toolset generates makefiles for the GNU toolchain – GNU Make, GCC compiler, GNU LD linker etc. – running
on Unix system.

Currently, only Linux systems (or something sufficiently compatible) are supported. In particular, file extensions and
linker behavior (symlinks, sonames) are assumed to be Linux ones.

See GNU toolchain for OS X (gnu-osx) for OS X variant.

Properties

Modules

gnu.makefile (type: path)

Name of output file for module’s makefile.

Default: GNUmakefile

Inheritable from parent: no

4.4.2 GNU toolchain for OS X (gnu-osx)

GNU toolchain for OS X.

This toolset is for building on OS X using makefiles, not Xcode. It incorporates some of the oddities of OS X’s
toolchain and should be used instead of GNU toolchain for Unix systems (gnu).

Properties

Modules

gnu-osx.makefile (type: path)

Name of output file for module’s makefile.

Default: Makefile.osx

Inheritable from parent: no

4.4.3 GNU toolchain for Sun CC compiler (gnu-suncc)

GNU toolchain for Sun CC compiler.

This toolset is for building using the Sun CC (aka Oracle Studio) toolset.

Properties

Modules

gnu-suncc.makefile (type: path)

Name of output file for module’s makefile.

Default: Makefile.suncc

Inheritable from parent: no

4.4. Toolsets 27

Bakefile, Release 1.2.5.1

4.4.4 Visual Studio 2003 (vs2003)

Visual Studio 2003.

Special properties

This toolset supports the same special properties that Visual Studio 2008 (vs2008). The only difference is that they are
prefixed with vs2003.option. instead of vs2008.option..

Properties

All targets

vs2003.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

Modules

vs2003.solutionfile (type: path)

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2003.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.4.5 Visual Studio 2005 (vs2005)

Visual Studio 2005.

Special properties

This toolset supports the same special properties that Visual Studio 2008 (vs2008). The only difference is that they are
prefixed with vs2005.option. instead of vs2008.option..

28 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Properties

All targets

vs2005.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

Modules

vs2005.solutionfile (type: path)

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2005.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.4.6 Visual Studio 2008 (vs2008)

Visual Studio 2008.

Special properties

In addition to the properties described below, it’s possible to specify any of the vcproj properties directly in a
bakefile. To do so, you have to set specially named variables on the target.

The variables are prefixed with vs2008.option., followed by tool name and attribute name. For example:

• vs2008.option.VCCLCompilerTool.EnableFunctionLevelLinking

• vs2008.option.VCLinkerTool.EnableCOMDATFolding

Additionally, the following are supported for non-tool nodes:

• vs2008.option.* (attributes of the root VisualStudioProject node)

• vs2008.option.Configuration.* (Configuration node attributes)

These variables can be used in several places in bakefiles:

4.4. Toolsets 29

Bakefile, Release 1.2.5.1

• In targets, to applied them as project’s global settings.

• In modules, to apply them to all projects in the module and its submodules.

• On per-file basis, to modify file-specific settings.

Examples:

vs2008.option.VCCLCompilerTool.EnableFunctionLevelLinking = false;

crashrpt.cpp::vs2008.option.VCCLCompilerTool.ExceptionHandling = 2;

Properties

All targets

vs2008.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

Modules

vs2008.solutionfile (type: path)

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2008.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.4.7 Visual Studio 2010 (vs2010)

Visual Studio 2010.

30 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Special properties

In addition to the properties described below, it’s possible to specify any of the vcxproj properties directly in a
bakefile. To do so, you have to set specially named variables on the target.

The variables are prefixed with vs2010.option., followed by node name and property name. The following nodes
are supported:

• vs2010.option.Globals.*

• vs2010.option.Configuration.*

• vs2010.option.* (this is the unnamed PropertyGroup with global settings such as TargetName)

• vs2010.option.ClCompile.*

• vs2010.option.ResourceCompile.*

• vs2010.option.Link.*

• vs2010.option.Lib.*

These variables can be used in several places in bakefiles:

• In targets, to applied them as project’s global settings.

• In modules, to apply them to all projects in the module and its submodules.

• On per-file basis, to modify file-specific settings.

Examples:

vs2010.option.GenerateManifest = false;
vs2010.option.Link.CreateHotPatchableImage = Enabled;

crashrpt.cpp::vs2010.option.ClCompile.ExceptionHandling = Async;

Properties

All targets

vs2010.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

Modules

vs2010.solutionfile (type: path)

4.4. Toolsets 31

Bakefile, Release 1.2.5.1

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2010.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.4.8 Visual Studio 2012 (vs2012)

Visual Studio 2012.

Special properties

This toolset supports the same special properties that Visual Studio 2010 (vs2010). The only difference is that they are
prefixed with vs2012.option. instead of vs2010.option., i.e. the nodes are:

• vs2012.option.Globals.*

• vs2012.option.Configuration.*

• vs2012.option.* (this is the unnamed PropertyGroup with global settings such as TargetName)

• vs2012.option.ClCompile.*

• vs2010.option.ResourceCompile.*

• vs2012.option.Link.*

• vs2012.option.Lib.*

Properties

All targets

vs2012.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

32 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Modules

vs2012.solutionfile (type: path)

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2012.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.4.9 Visual Studio 2013 (vs2013)

Visual Studio 2013.

Special properties

This toolset supports the same special properties that Visual Studio 2010 (vs2010). The only difference is that they are
prefixed with vs2013.option. instead of vs2010.option., i.e. the nodes are:

• vs2013.option.Globals.*

• vs2013.option.Configuration.*

• vs2013.option.* (this is the unnamed PropertyGroup with global settings such as TargetName)

• vs2013.option.ClCompile.*

• vs2010.option.ResourceCompile.*

• vs2013.option.Link.*

• vs2013.option.Lib.*

Properties

All targets

vs2013.projectfile (type: path)

File name of the project for the target.

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Default: automatically generated

Inheritable from parent: no

4.4. Toolsets 33

Bakefile, Release 1.2.5.1

Modules

vs2013.solutionfile (type: path)

File name of the solution file for the module.

Default: same name as the module’s bakefile, with .sln extension, in @srcdir

Inheritable from parent: no

vs2013.generate-solution (type: bool)

Whether to generate solution file for the module. Set to false if you want to omit the solution,
e.g. for some submodules with only a single target.

Default: True

Inheritable from parent: no

4.5 Targets

4.5.1 Custom action script (action)

Custom action script.

Action targets execute arbitrary commands. They can be used to do various tasks that don’t fit the model of compiling
or creating files, such as packaging files, installing, uploading, running tests and so on.

Actions are currently only supported by makefile-based toolsets. See the pre-build-commands and
post-build-commands properties for another alternative that is supported by Visual Studio projects.

If the optional outputs property is specified, the action is supposed to generate the files listed in this property.
This means that other targets depending on this action will depend on these files in the generated makefile, instead of
depending on the phony target for an action without outputs and also that these files will be cleaned up by the clean
target of the generated makefile.

action osx-bundle
{

deps = test;
commands = "mkdir -p Test.app/Contents/MacOS"

"cp -f test Test.app/Contents/MacOS/test"
;

}

Properties

commands (type: list of strings)

List of commands to run.

Default: empty

Inheritable from parent: no

outputs (type: list of paths)

Output files created by this action, if any.

Default: null

34 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Inheritable from parent: no

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

4.5. Targets 35

Bakefile, Release 1.2.5.1

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

Inheritable from parent: no

vs2012.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

36 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

Inheritable from parent: no

4.5.2 External build system (external)

External build system.

This target type is used to invoke makefiles or project files not implemented in Bakefile, for example to build 3rd party
libraries.

Currently, only Visual Studio projects (vcproj, vcxproj, csproj) are supported and only when using a Visual Studio
toolset.

Properties

file (type: path)

File name of the external makefile or project.

Required property

Inheritable from parent: no

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

4.5. Targets 37

Bakefile, Release 1.2.5.1

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

38 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

Inheritable from parent: no

vs2012.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

4.5. Targets 39

Bakefile, Release 1.2.5.1

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

Inheritable from parent: no

4.5.3 Static library (library)

Static library.

Properties

basename (type: string)

Library name.

This is not full filename or even path, it’s only its base part, to which platform-specific prefix
(if applicable) and extension are added. By default, it’s the same as target’s ID, but it can be
changed e.g. if the filename should contain version number, which would be impractical to use
as target identifier in the bakefile.

library foo {
// use e.g. libfoo24.a on Unix and foo24.lib
basename = foo$(vermajor)$(verminor);

}

Default: $(id)

Inheritable from parent: no

sources (type: list of paths)

Source files.

Default: empty

Inheritable from parent: no

headers (type: list of paths)

40 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Header files.

Default: empty

Inheritable from parent: no

defines (type: list of strings)

List of preprocessor macros to define.

Default: empty

Inheritable from parent: yes

includedirs (type: list of paths)

Directories where to look for header files.

Default: empty

Inheritable from parent: yes

warnings (type: warnings)

Warning level for the compiler.

Use no to completely disable warning, minimal to show only the most important warning
messages or all to enable all warnings.

Default: default

Allowed values: “no”, “minimal”, “default”, “all”

Inheritable from parent: yes

compiler-options (type: list of strings)

Additional compiler options common to all C-like compilers (C, C++, Objective-C, Objective-
C++).

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

c-compiler-options (type: list of strings)

Additional options for C compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

cxx-compiler-options (type: list of strings)

Additional options for C++ compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

libs (type: list of strings)

4.5. Targets 41

Bakefile, Release 1.2.5.1

Additional libraries to link with.

Do not use this property to link with libraries built as part of your project; use deps for that.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

libdirs (type: list of paths)

Additional directories where to look for libraries.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

link-options (type: list of strings)

Additional linker options.

Note that the options are compiler/linker-specific and so this property should only be set con-
ditionally for particular compilers that recognize the options.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

archs (type: list of architectures)

Architectures to compile for.

Adds support for building binaries for specified architectures, if supported by the toolset. Sup-
port may take the form of either multi-arch binaries (OS X) or additional build configurations
(Visual Studio).

The default empty value means to do whatever the default behavior of the toolset is.

Currently only supported on OS X and in Visual Studio.

Default: null

Allowed values: “x86”, “x86_64”

Inheritable from parent: yes

win32-crt-linkage (type: linkage)

How to link against the C Runtime Library.

If dll (the default), the executable may depend on some DLLs provided by the compiler. If
static then a static version of the CRT is linked directly into the executable.

Default: dll

Allowed values: “static”, “dll”

Inheritable from parent: yes

win32-unicode (type: bool)

42 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Compile win32 code in Unicode mode? If enabled, _UNICODE symbol is defined and the wide character
entry point (WinMain, . . .) is used.

Default: True

Inheritable from parent: yes

outputdir (type: path)

Directory where final binaries are put.

Note that this is not the directory for intermediate files such as object files – these are put in
@builddir. By default, output location is the same, @builddir, but can be overwritten to
for example put all executables into bin/ subdirectory.

Default: @builddir/

Inheritable from parent: yes

pic (type: bool)

Compile position-independent code.

By default, libraries (both shared and static, because the latter could be linked into a shared lib
too) are linked with -fPIC and executables are not.

Default: None

Inheritable from parent: yes

multithreading (type: bool)

Enable support for multithreading.

MT support is enabled by default, but can be disabled when not needed.

On Unix, this option causes the use of pthreads library. Visual Studio always uses MT-safe
CRT, even if this setting is disabled.

Default: True

Inheritable from parent: yes

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

4.5. Targets 43

Bakefile, Release 1.2.5.1

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

44 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Inheritable from parent: no

vs2012.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

4.5. Targets 45

Bakefile, Release 1.2.5.1

vs2010.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

Inheritable from parent: no

4.5.4 Runtime-loaded dynamic module (plugin) (loadable-module)

Runtime-loaded dynamic module (plugin).

Properties

basename (type: string)

Base name of the loadable module.

This is not full filename or even path, it’s only its base part, to which platform-specific prefix
and/or extension are added. By default, it’s the same as target’s ID, but it can be changed e.g.
if the filename should contain version number, which would be impractical to use as target
identifier in the bakefile.

loadable-module myplugin {
basename = myplugin-v1;

}

Default: $(id)

Inheritable from parent: no

extension (type: string)

File extension of the module, including the leading dot.

By default, native extension for shared libraries (e.g. “.dll” on Windows) is used.

loadable-module excel_plugin {
extension = .xll;

}

Default: null

Inheritable from parent: no

sources (type: list of paths)

Source files.

Default: empty

Inheritable from parent: no

headers (type: list of paths)

Header files.

Default: empty

Inheritable from parent: no

46 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

defines (type: list of strings)

List of preprocessor macros to define.

Default: empty

Inheritable from parent: yes

includedirs (type: list of paths)

Directories where to look for header files.

Default: empty

Inheritable from parent: yes

warnings (type: warnings)

Warning level for the compiler.

Use no to completely disable warning, minimal to show only the most important warning
messages or all to enable all warnings.

Default: default

Allowed values: “no”, “minimal”, “default”, “all”

Inheritable from parent: yes

compiler-options (type: list of strings)

Additional compiler options common to all C-like compilers (C, C++, Objective-C, Objective-
C++).

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

c-compiler-options (type: list of strings)

Additional options for C compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

cxx-compiler-options (type: list of strings)

Additional options for C++ compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

libs (type: list of strings)

Additional libraries to link with.

Do not use this property to link with libraries built as part of your project; use deps for that.

4.5. Targets 47

Bakefile, Release 1.2.5.1

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

libdirs (type: list of paths)

Additional directories where to look for libraries.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

link-options (type: list of strings)

Additional linker options.

Note that the options are compiler/linker-specific and so this property should only be set con-
ditionally for particular compilers that recognize the options.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

archs (type: list of architectures)

Architectures to compile for.

Adds support for building binaries for specified architectures, if supported by the toolset. Sup-
port may take the form of either multi-arch binaries (OS X) or additional build configurations
(Visual Studio).

The default empty value means to do whatever the default behavior of the toolset is.

Currently only supported on OS X and in Visual Studio.

Default: null

Allowed values: “x86”, “x86_64”

Inheritable from parent: yes

win32-crt-linkage (type: linkage)

How to link against the C Runtime Library.

If dll (the default), the executable may depend on some DLLs provided by the compiler. If
static then a static version of the CRT is linked directly into the executable.

Default: dll

Allowed values: “static”, “dll”

Inheritable from parent: yes

win32-unicode (type: bool)

Compile win32 code in Unicode mode? If enabled, _UNICODE symbol is defined and the wide character
entry point (WinMain, . . .) is used.

Default: True

48 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Inheritable from parent: yes

outputdir (type: path)

Directory where final binaries are put.

Note that this is not the directory for intermediate files such as object files – these are put in
@builddir. By default, output location is the same, @builddir, but can be overwritten to
for example put all executables into bin/ subdirectory.

Default: @builddir/

Inheritable from parent: yes

pic (type: bool)

Compile position-independent code.

By default, libraries (both shared and static, because the latter could be linked into a shared lib
too) are linked with -fPIC and executables are not.

Default: None

Inheritable from parent: yes

multithreading (type: bool)

Enable support for multithreading.

MT support is enabled by default, but can be disabled when not needed.

On Unix, this option causes the use of pthreads library. Visual Studio always uses MT-safe
CRT, even if this setting is disabled.

Default: True

Inheritable from parent: yes

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

4.5. Targets 49

Bakefile, Release 1.2.5.1

Default: empty

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

Inheritable from parent: no

vs2012.projectfile (type: path)

50 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

4.5. Targets 51

Bakefile, Release 1.2.5.1

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

Inheritable from parent: no

4.5.5 Executable program (program)

Executable program.

Properties

basename (type: string)

Base name of the executable.

This is not full filename or even path, it’s only its base part, to which platform-specific exten-
sion is added. By default, it’s the same as target’s ID, but it can be changed e.g. if the filename
should contain version number, which would be impractical to use as target identifier in the
bakefile.

program mytool {
// use mytool2.exe or /usr/bin/mytool2
basename = (id)(vermajor);

}

Default: $(id)

Inheritable from parent: no

win32-subsystem (type: subsystem)

Windows subsystem the executable runs in. Must be set to windows for console-less appli-
cations.

Default: console

Allowed values: “console”, “windows”

Inheritable from parent: yes

sources (type: list of paths)

Source files.

Default: empty

Inheritable from parent: no

headers (type: list of paths)

Header files.

Default: empty

Inheritable from parent: no

defines (type: list of strings)

52 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

List of preprocessor macros to define.

Default: empty

Inheritable from parent: yes

includedirs (type: list of paths)

Directories where to look for header files.

Default: empty

Inheritable from parent: yes

warnings (type: warnings)

Warning level for the compiler.

Use no to completely disable warning, minimal to show only the most important warning
messages or all to enable all warnings.

Default: default

Allowed values: “no”, “minimal”, “default”, “all”

Inheritable from parent: yes

compiler-options (type: list of strings)

Additional compiler options common to all C-like compilers (C, C++, Objective-C, Objective-
C++).

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

c-compiler-options (type: list of strings)

Additional options for C compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

cxx-compiler-options (type: list of strings)

Additional options for C++ compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

libs (type: list of strings)

Additional libraries to link with.

Do not use this property to link with libraries built as part of your project; use deps for that.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

4.5. Targets 53

Bakefile, Release 1.2.5.1

Default: empty

Inheritable from parent: yes

libdirs (type: list of paths)

Additional directories where to look for libraries.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

link-options (type: list of strings)

Additional linker options.

Note that the options are compiler/linker-specific and so this property should only be set con-
ditionally for particular compilers that recognize the options.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

archs (type: list of architectures)

Architectures to compile for.

Adds support for building binaries for specified architectures, if supported by the toolset. Sup-
port may take the form of either multi-arch binaries (OS X) or additional build configurations
(Visual Studio).

The default empty value means to do whatever the default behavior of the toolset is.

Currently only supported on OS X and in Visual Studio.

Default: null

Allowed values: “x86”, “x86_64”

Inheritable from parent: yes

win32-crt-linkage (type: linkage)

How to link against the C Runtime Library.

If dll (the default), the executable may depend on some DLLs provided by the compiler. If
static then a static version of the CRT is linked directly into the executable.

Default: dll

Allowed values: “static”, “dll”

Inheritable from parent: yes

win32-unicode (type: bool)

Compile win32 code in Unicode mode? If enabled, _UNICODE symbol is defined and the wide character
entry point (WinMain, . . .) is used.

Default: True

Inheritable from parent: yes

54 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

outputdir (type: path)

Directory where final binaries are put.

Note that this is not the directory for intermediate files such as object files – these are put in
@builddir. By default, output location is the same, @builddir, but can be overwritten to
for example put all executables into bin/ subdirectory.

Default: @builddir/

Inheritable from parent: yes

pic (type: bool)

Compile position-independent code.

By default, libraries (both shared and static, because the latter could be linked into a shared lib
too) are linked with -fPIC and executables are not.

Default: None

Inheritable from parent: yes

multithreading (type: bool)

Enable support for multithreading.

MT support is enabled by default, but can be disabled when not needed.

On Unix, this option causes the use of pthreads library. Visual Studio always uses MT-safe
CRT, even if this setting is disabled.

Default: True

Inheritable from parent: yes

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

4.5. Targets 55

Bakefile, Release 1.2.5.1

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

Inheritable from parent: no

vs2012.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

56 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

4.5. Targets 57

Bakefile, Release 1.2.5.1

Inheritable from parent: no

4.5.6 Dynamically loaded library (shared-library)

Dynamically loaded library.

Properties

basename (type: string)

Base name of the library.

This is not full filename or even path, it’s only its base part, to which platform-specific prefix
and/or extension are added. By default, it’s the same as target’s ID, but it can be changed e.g.
if the filename should contain version number, which would be impractical to use as target
identifier in the bakefile.

shared-library utils {
// use myapp_utils.lib, myapp_utils.dll, libmyapp_utils.so
basename = myapp_utils;

}

Default: $(id)

Inheritable from parent: no

sources (type: list of paths)

Source files.

Default: empty

Inheritable from parent: no

headers (type: list of paths)

Header files.

Default: empty

Inheritable from parent: no

defines (type: list of strings)

List of preprocessor macros to define.

Default: empty

Inheritable from parent: yes

includedirs (type: list of paths)

Directories where to look for header files.

Default: empty

Inheritable from parent: yes

warnings (type: warnings)

Warning level for the compiler.

Use no to completely disable warning, minimal to show only the most important warning
messages or all to enable all warnings.

58 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Default: default

Allowed values: “no”, “minimal”, “default”, “all”

Inheritable from parent: yes

compiler-options (type: list of strings)

Additional compiler options common to all C-like compilers (C, C++, Objective-C, Objective-
C++).

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

c-compiler-options (type: list of strings)

Additional options for C compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

cxx-compiler-options (type: list of strings)

Additional options for C++ compiler.

Note that the options are compiler-specific and so this property should only be set conditionally
for particular compilers that recognize the options.

Default: empty

Inheritable from parent: yes

libs (type: list of strings)

Additional libraries to link with.

Do not use this property to link with libraries built as part of your project; use deps for that.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

libdirs (type: list of paths)

Additional directories where to look for libraries.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

link-options (type: list of strings)

4.5. Targets 59

Bakefile, Release 1.2.5.1

Additional linker options.

Note that the options are compiler/linker-specific and so this property should only be set con-
ditionally for particular compilers that recognize the options.

When this list is non-empty on a Static library (library), it will be used when linking executa-
bles that use the library.

Default: empty

Inheritable from parent: yes

archs (type: list of architectures)

Architectures to compile for.

Adds support for building binaries for specified architectures, if supported by the toolset. Sup-
port may take the form of either multi-arch binaries (OS X) or additional build configurations
(Visual Studio).

The default empty value means to do whatever the default behavior of the toolset is.

Currently only supported on OS X and in Visual Studio.

Default: null

Allowed values: “x86”, “x86_64”

Inheritable from parent: yes

win32-crt-linkage (type: linkage)

How to link against the C Runtime Library.

If dll (the default), the executable may depend on some DLLs provided by the compiler. If
static then a static version of the CRT is linked directly into the executable.

Default: dll

Allowed values: “static”, “dll”

Inheritable from parent: yes

win32-unicode (type: bool)

Compile win32 code in Unicode mode? If enabled, _UNICODE symbol is defined and the wide character
entry point (WinMain, . . .) is used.

Default: True

Inheritable from parent: yes

outputdir (type: path)

Directory where final binaries are put.

Note that this is not the directory for intermediate files such as object files – these are put in
@builddir. By default, output location is the same, @builddir, but can be overwritten to
for example put all executables into bin/ subdirectory.

Default: @builddir/

Inheritable from parent: yes

pic (type: bool)

60 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

Compile position-independent code.

By default, libraries (both shared and static, because the latter could be linked into a shared lib
too) are linked with -fPIC and executables are not.

Default: None

Inheritable from parent: yes

multithreading (type: bool)

Enable support for multithreading.

MT support is enabled by default, but can be disabled when not needed.

On Unix, this option causes the use of pthreads library. Visual Studio always uses MT-safe
CRT, even if this setting is disabled.

Default: True

Inheritable from parent: yes

id (type: id)

Target’s unique name (ID).

Read-only property

Inheritable from parent: no

deps (type: list of ids)

Dependencies of the target (list of IDs).

The dependencies are handled in target-specific ways. At the very least, they are added to the
list of dependencies in generated makefiles or projects to ensure correct build order. Some
targets may be smart about some kinds of the dependencies and do more.

In particular, compiled targets (executables, DLLs) will automatically link against all libraries
found in deps.

Default: empty

Inheritable from parent: no

pre-build-commands (type: list of strings)

Custom commands to run before building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

Inheritable from parent: no

post-build-commands (type: list of strings)

Custom commands to run after building the target.

The value is a list of shell commands to run. Notice that the commands are platform-specific
and so typically need to be set conditionally depending on the value of toolset.

Currently only implemented by Visual Studio.

Default: empty

4.5. Targets 61

Bakefile, Release 1.2.5.1

Inheritable from parent: no

configurations (type: list of strings)

List of configurations to use for this target.

See Build configurations for more information.

Default: Debug Release

Inheritable from parent: yes

vs2008.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2008.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2008 (vs2008)

Default: automatically generated

Inheritable from parent: no

vs2005.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2005.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2005 (vs2005)

Default: automatically generated

Inheritable from parent: no

vs2012.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2012.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2012 (vs2012)

Default: automatically generated

Inheritable from parent: no

62 Chapter 4. Reference documentation

Bakefile, Release 1.2.5.1

vs2013.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2013.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2013 (vs2013)

Default: automatically generated

Inheritable from parent: no

vs2003.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2003.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2003 (vs2003)

Default: automatically generated

Inheritable from parent: no

vs2010.projectfile (type: path)

File name of the project for the target.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: $(id).vcxproj in the same directory as the .sln file

Inheritable from parent: no

vs2010.guid (type: string)

GUID of the project.

Only for toolsets: Visual Studio 2010 (vs2010)

Default: automatically generated

Inheritable from parent: no

4.5. Targets 63

Bakefile, Release 1.2.5.1

64 Chapter 4. Reference documentation

CHAPTER 5

Extending and developing Bakefile

5.1 Writing Bakefile plugins

5.2 Reference

5.2.1 API reference documentation

bkl.model – project model

class bkl.model.Configuration(name, base, is_debug, source_pos=None)
Bases: object

Class representing a configuration.

Each model has two special configurations, Debug and Release, predefined.

name
Name of the configuration

base
Base configuration this one is derived from, as a Configuration instance, or None for “Debug” and
“Release” configurations.

is_debug
Is this a debug configuration?

source_pos
Source code position of object’s definition, or None.

create_derived(new_name, source_pos=None)
Returns a new copy of this configuration with a new name.

derived_from(cfg)
Returns true if self derives, directly or indirectly, from configuration cfg.

65

Bakefile, Release 1.2.5.1

Returns 0 if not derived. Returns degree of inheritance if derived: 1 if cfg is a direct base, 2 if it is a base
of self ’s base etc.

class bkl.model.ConfigurationProxy(model, config)
Bases: object

Proxy for accessing model part’s variables as configuration-specific. All expressions obtained using operator[]
are processed to remove conditionals depending on the value of “config”, by substituting appropriate value
according to the configuration name passed to proxy’s constructor.

See bkl.model.ModelPartWithConfigurations.configurations() for more information.

apply_subst(value)
Applies the proxy’s magic on given value. This is useful for when the proxy cannot be simply used in
place of a real target. For example, NativeLinkedType.get_ldlibs() inspects other targets too and so the
proxy is only partially effective.

class bkl.model.ConfigurationsPropertyMixin
Mixin class for implementation configurations property.

configurations
Returns all configurations for this model part (e.g. a target), as ConfigurationProxy objects that can be
used similarly to the way the model part object itself is. In particular, it’s [] operator works the same.

The proxies are intended to be used in place of targets in code that needs to get per-configuration values of
properties.

>>> for cfg in target.configurations:
... outdir = cfg["outdir"]

class bkl.model.ModelPart(parent, source_pos=None)
Bases: object

Base class for model “parts”, i.e. projects, modules or targets. Basically, anything that can have variables on it.

name
Name of the part – e.g. target name, filename of source file etc.

variables
Dictionary of all variables defined in global scope in this module

parent
Parent model part of this one, i.e. the part one step higher in object model hierarchy (e.g. module for a
target). May only be None for toplevel part (the project). Dictionary of all variables defined in global
scope in this module

source_pos
Source code position of object’s definition, or None.

add_variable(var)
Adds a new variable object.

all_variables()
Returns iterator over all variables in the target. Works recursively, i.e. scans all modules and targets under
this object too.

child_parts()
Yields model parts that are (direct) children of this.

enum_props()
Enumerates properties defined on this object.

66 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

get_child_part_by_name(name)
Returns child of this part of the model with given name (e.g. target with that name). Throws if not found.

get_matching_prop_with_inheritance(name)
Like get_prop(), but looks for inheritable properties defined for child scopes too (e.g. returns per-target
property ‘outputdir’ even in module scope).

(This is used for assigning into variables and validating them against properties. Don’t use unless you
know what you’re doing.)

get_prop(name)
Try to get a property name. Called by get_variable_value() if no variable with such name could be found.

Note that unlike get_variable(), this one doesn’t work recursively upwards, but finds only properties
that are defined for this scope.

See also:

enum_props()

get_variable(name)
Returns variable object for given variable or None if it is not defined at this scope.

This method does not do any recursive resolution or account for properties and their default values; it
merely gets the variable object if it is defined at this scope.

See also:

get_variable_value(), resolve_variable()

get_variable_value(name)
Similar to get_variable(), but returns the expression with variable’s value. Throws and exception if the
variable isn’t defined, neither in this scope or in any of its parent scopes.

If variable name is not explicitly defined, but a property with the same name exists in this scope, then its
default value is used.

If the variable is not defined in this scope at all, looks in the parent – but only if name doesn’t correspond
to non-inheritable property. In other words, fails only if the variable isn’t defined for use in this scope.

Throws if the value cannot be found.

As a shorthand syntax for this function, key indices may be used: >>> target[“includedirs”]

See also:

resolve_variable()

is_variable_explicitly_set(name)
Returns true if the variable was set in the bakefiles explicitly.

is_variable_null(name)
Returns true if the variable is unset or null (which amounts to not being set in this toolset / under current
condition).

make_variables_for_missing_props(toolset)
Creates variables for properties that don’t have variables set yet.

5.2. Reference 67

Bakefile, Release 1.2.5.1

Parameters toolset – Name of the toolset to generate for. Properties specific to other toolsets
are ignored for efficiency.

resolve_variable(name)
Returns variable object for given variable or None if it is not defined.

Unlike get_variable(), this method does perform recursive resolution and finds the variable (if it
exists) according to the same rules that apply to $(. . .) expressions and to get_variable_value().

See also:

get_variable(), get_variable_value()

Note: Unlike get_variable_value(), this method doesn’t look for properties’ default values.

set_property_value(prop, value)
Adds variable with a value for property prop.

The property must exist on this model part. This is just a convenience wrapper around add_variable()
and get_prop().

should_build()
Evaluates the condition property on this part and returns True if it should be built or False otherwise.
Throws NonConstError if it cannot be determined.

condition
Condition expression (bkl.expr.Expr) that describes when should this part of the model be included.
If it evaluates to true, the part is build, otherwise it is not. Typical use is enabling some targets or source
files only for some toolsets, but it may be more complicated. Depending on the context and the toolset,
the expression may even be undeterminable until make-time, if it references some user options (but not all
toolsets can handle this). Is None if no condition is associated.

module
The bkl.model.Module that this part belongs to.

project
The bkl.model.Project project this part belongs to.

class bkl.model.Module(parent, source_pos)
Bases: bkl.model.ModelPart

Representation of single compilation unit. Corresponds to one Bakefile input file (either specified on command
line or imported using import command; files included using include from other files are not represented by
Module object) and typically to one generated output file.

targets
Dictionary of all targets defined in this module

source_file
Path to the input .bkl source file this module was created from.

srcdir
@srcdir path effective for this module.

imports
Set of filenames of sources imported using the ‘import’ keyword at this level.

child_parts()
Yields model parts that are (direct) children of this.

68 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

enum_props()
Enumerates properties defined on this object.

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

is_submodule_of(module)
Returns True if this module is (grand-)*child of module.

submodules
Submodules of this module.

class bkl.model.Project
Bases: bkl.model.ModelPart

Abstract model that completely describes state of loaded and processed Bakefile file(s) within the project.

modules
List of all modules included in the project.

configurations
All configurations defined in the project.

settings
List of all settings included in the project.

templates
Dictionary of all templates defined in the project.

add_configuration(config)
Adds a new configuration to the project.

add_template(templ)
Adds a new template to the project.

all_targets()
Returns iterator over all targets in the project.

child_parts()
Yields model parts that are (direct) children of this.

clone()
Makes an independent copy of the model.

Unlike deepcopy(), this does not copy everything, but uses an appropriate mix of deep and shallow copies.
For example, expressions, which are read-only, are copied shallowly, but variables or model parts, both of
which can be modified in further toolset-specific optimizations, are copied deeply.

enum_props()
Enumerates properties defined on this object.

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

get_target(id)
Returns Target object identified by its string ID.

5.2. Reference 69

Bakefile, Release 1.2.5.1

has_target(id)
Returns true if target with given name exists.

top_module
The toplevel module of this project.

class bkl.model.ProxyIfResolver(config)
Bases: bkl.expr.RewritingVisitor

Replaces references to $(config) with value, allowing the expressions to be evaluated.

if_(e)
Called on IfExpr expressions.

placeholder(e)
Called on PlaceholderExpr expressions.

reference(e)
Called on ReferenceExpr expressions.

class bkl.model.Setting(parent, name, source_pos)
Bases: bkl.model.ModelPart

User-settable make-time configuration value.

child_parts()
Yields model parts that are (direct) children of this.

enum_props()
Enumerates properties defined on this object.

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

class bkl.model.SourceFile(parent, filename, source_pos)
Bases: bkl.model.ModelPart, bkl.model.ConfigurationsPropertyMixin

Source file object.

child_parts()
Yields model parts that are (direct) children of this.

enum_props()
Enumerates properties defined on this object.

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

class bkl.model.Target(parent, name, target_type, source_pos)
Bases: bkl.model.ModelPart, bkl.model.ConfigurationsPropertyMixin

A Bakefile target.

Variables are typed.

name
Name (ID) of the target. This must be unique in the entire project.

70 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

type
Type of the target, as bkl.api.TargetType instance.

sources
List of source files, as SourceFile instances.

headers
List of header files, as SourceFile instances. The difference from sources is that headers are installable
and usable for compilation of other targets, while sources are not.

child_parts()
Yields model parts that are (direct) children of this.

enum_props()
Enumerates properties defined on this object.

Like get_prop(), this method doesn’t work recursively upwards, but lists only properties that are de-
fined for this scope.

See also:

get_prop()

class bkl.model.Template(name, bases, source_pos=None)
Bases: object

A template.

name
Name of the template.

bases
List of base templates (as bkl.model.Template objects).

source_pos
Source code position of template’s definition, or None.

class bkl.model.Variable(name, value, type=None, readonly=False)
Bases: object

A Bakefile variable.

Variables can be either global or target-specific. Value held by a variable is stored as expression tree, it isn’t
evaluated into string form until the final stage of processing, when output is generated.

Variables are typed.

name
Name of the variable.

type
Type of the property, as bkl.vartypes.Type instance.

value
Value of the variable, as bkl.expr.Expr object.

readonly
Indicates if the variable is read-only. Read-only variables can only be assigned once and cannot be modified
afterwards.

is_property
Indicates if the variable corresponds to a property.

is_explicitly_set
Indicates if the value was set explicitly by the user. Normally true, only false for properties’ default values.

5.2. Reference 71

Bakefile, Release 1.2.5.1

static from_property(prop, value=None)
Creates a variable from property prop. In particular, takes the type and readonly attribute from the
property. Properties’ default value is not assigned; value is used instead.

set_value(value)
Sets new value on the variable. The new value must have same type as current value. Read-only variable
cannot be set.

Parameters value – New value as bkl.expr.Expr object.

bkl.expr – representation of expressions

The Expr class that represents a Bakefile expression (be it a condition or variable value) is defined in this module,
together with useful functions for evaluating and manipulating expressions.

class bkl.expr.BoolExpr(operator, left, right=None, pos=None)
Bases: bkl.expr.Expr

Boolean expression.

operator
Boolean operator of the node. The value is one of BoolExpr constants, e.g. BoolExpr.AND.

left
Left (or in the case of NOT operator, only) operand.

right
Right operand. Not set for the NOT operator.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

has_bool_operands()
Returns true if the operator is such that it requires boolean operands (i.e. NOT, AND, OR).

AND = '&&'
And operator

EQUAL = '=='
Equality operator

NOT = '!'
Not operator; unlike others, this one is unary and has no right operand.

NOT_EQUAL = '!='
Inequality operator

OR = '||'
Or operator

class bkl.expr.BoolValueExpr(value, pos=None)
Bases: bkl.expr.Expr

Constant boolean value, i.e. true or false.

72 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

value
Value of the literal, as (Python) boolean.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.ConcatExpr(items, pos=None)
Bases: bkl.expr.Expr

Concatenation of several expression. Typically, used with LiteralExpr and ReferenceExpr to express values such
as “$(foo).cpp”.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.CondTrackingMixin
Helper mixin class for tracking currently active condition. Useful for handling e.g. nested if statements.

active_if_cond
Currently active condition, if any.

class bkl.expr.Expr(pos=None)
Bases: object

Value expression.

Represents a value (typically assigned to a variable, but also expressions used somewhere else, e.g. as condi-
tions) as tree of expression objects. In Bakefile, the expressions are kept in tree representation until the last
possible moment, and are manipulated in this form.

Note that expression objects are immutable: if you need to modify an expression, replace it with a new object.

pos
Location of the expression in source tree.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

as_symbolic()
Returns the value as a symbolic representation, see SymbolicFormatter.

5.2. Reference 73

Bakefile, Release 1.2.5.1

is_const()
Returns true if the expression is constant, i.e. can be evaluated at this time (bake-time), as opposed to
expressions that depend on a setting that can only be determined at make-time.

See also:

as_py()

is_null()
Returns true if the expression evaluates to null, i.e. empty value.

class bkl.expr.Formatter(paths_info)
Bases: bkl.expr.Visitor

Base class for expression formatters. A formatter is a class that formats the expression into a string in the way
that is needed on the output. For example, it handles things such as path separators on different platforms,
variable references, quoting of literals with whitespace in them and so on.

The base class implements commonly used formatting, such as using whitespace for delimiting list items etc.

Use the format() method to format an expression.

list_sep
Separator for list items (by default, single space).

paths_info
PathAnchorsInfo information object to use for formatting of paths.

bool(e)
Called on BoolExpr expressions.

bool_value(e)
Called on BoolValueExpr expressions.

concat(e)
Called on ConcatExpr expressions.

format(e)
Formats expression e into a string.

if_(e)
Called on IfExpr expressions.

list(e)
Called on ListExpr expressions.

literal(e)
Called on LiteralExpr expressions.

null(e)
Called on NullExpr expressions.

path(e)
Called on PathExpr expressions.

reference(e)
Called on ReferenceExpr expressions.

class bkl.expr.IfExpr(cond, yes, no, pos=None)
Bases: bkl.expr.Expr

Conditional expression.

cond
The condition expression.

74 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

value_yes
Value of the expression if the condition evaluates to True.

value_no
Value of the expression if the condition evaluates to False.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

get_value()
Returns value of the conditional expression, i.e. either value_yes or value_no, depending on what
the condition evaluates to. Throws if the condition cannot be evaluated.

class bkl.expr.ListExpr(items, pos=None)
Bases: bkl.expr.Expr

List expression – list of several values of the same type.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.LiteralExpr(value, pos=None)
Bases: bkl.expr.Expr

Constant expression – holds a literal.

value
Value of the literal.

pos
Location of the expression in source tree.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.NullExpr(pos=None)
Bases: bkl.expr.Expr

Empty/unset value.

5.2. Reference 75

Bakefile, Release 1.2.5.1

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.PathAnchorsInfo(dirsep, outfile, builddir, model)
Bases: object

Struct with information about real values for symbolic anchors of PathExpr paths. These are needed in order
to format path expression (using bkl.expr.Formatter or otherwise).

dirsep
Separator to separate path components (“/” on Unix and “” on Windows).

top_srcdir
Path to the top source directory, as a list of components, relative to the output directory. Will be empty list
if the paths are the same.

builddir
Path to the build directory – the directory where object files and other generated files are put – as a list of
components, relative to the output directory. Will be empty list if the paths are the same.

top_srcdir_abs
Absolute native path to the top source directory.

outdir_abs
Absolute native path to the output directory – the directory where the project or makefile currently being
generated is written to.

builddir_abs
Absolute native path to the build directory.

The constructor creates anchors information from native paths passed to it:

Parameters

• dirsep – Path components separator, same as the dirsep attribute.

• outfile – (Native) path to the output file (project, makefile). Paths in the output will be
typically formatted relatively to this path. The outdir_abs attribute is computed from
this parameter.

• builddir – (Native) path to the build directory. May be None if builddir-relative paths
make no sense in this context (e.g. for VS2010 solution files).

• model – Part of the model (bkl.model.Module or bkl.model.Target) that outfile
corresponds to.

class bkl.expr.PathExpr(components, anchor=’@srcdir’, anchor_file=None, pos=None)
Bases: bkl.expr.Expr

Expression that holds a file or directory name, or part of it.

components
List of path’s components (as expressions). For example, components of path foo/bar/file.cpp are
["foo", "bar", "file.cpp"].

76 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

anchor
The point to which the path is relative to. This can be one of the following:

• expr.ANCHOR_SRCDIR – Path is relative to the directory where the input bakefile is (unless over-
riden in it).

• expr.ANCHOR_TOP_SRCDIR – Path is relative to the top source directory (where the toplevel
.bkl file is, unless overriden in it).

• expr.ANCHOR_BUILDDIR – Path is relative to the build directory. This anchor should be used for
all transient files (object files or other generated files).

anchor_file
Name of the file the anchor was written in. This is important for @srcdir, which is relative to this place.

pos
Location of the expression in source tree.

as_native_path(paths_info)
Returns the path expressed as absolute native path. Requires complete bkl.expr.PathAnchorsInfo
information as its argument.

Throws NonConstError if it cannot be done because of conditional subexpression.

See also:

as_native_path_for_output()

as_native_path_for_output(model)
Specialized version of as_native_path() that only works with srcdir-based paths. It’s useful for code
that needs to obtain output file name (which happens before PathAnchorsInfo can be constructed).

Parameters model – Any part of the model.

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

change_extension(newext)
Changes extension of the filename to newext and returns bkl.expr.PathExpr with the new path.

get_basename()
Returns basename of the filename path (i.e. the name without directory or extension). Throws if it cannot
be determined.

get_directory_path()
Returns PathExpr with the directory component.

get_extension()
Returns extension of the filename path. Throws if it cannot be determined.

is_external_absolute()
Returns true if the path is to be treated as an absolute path provided externally (i.e. via an user setting)
when the makefile was invoked.

TODO: add a @absdir anchor instead?

5.2. Reference 77

Bakefile, Release 1.2.5.1

class bkl.expr.PlaceholderExpr(var, pos=None)
Bases: bkl.expr.Expr

This is a hack. It is used as placeholder for expressions with not yet known value. In particular, it is used for
the “toolset” property before the model is split into toolset-specific copies, to allow partial evaluation common
to all of them.

var
Name of referenced setting (e.g. “config” or “toolset”).

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

class bkl.expr.ReferenceExpr(var, context, pos=None)
Bases: bkl.expr.Expr

Reference to a variable.

var
Name of referenced variable.

context
Context of the reference, i.e. the scope in which it was used. This is the appropriate bkl.model.
ModelPart instance (e.g. a target or a module).

as_py()
Returns the expression as Python value (e.g. a list of strings) if it evaluates to a constant literal. Throws
an exception if the expression cannot be evaluated at bake-time (such expressions cannot be used in some
situations, e.g. to specify output files). Paths are returned as native paths.

Use bkl.expr.Formatter if you need to format expressions into strings.

See also:

is_const()

get_value()
Returns value of the referenced variable. Throws an exception if the reference couldn’t be resolved.

get_variable()
Return the variable object this reference points to.

Use this method only if necessary; whenever possible, get_value() should be used instead.

Note that the returned value may be None, either if the referenced variable doesn’t exist or when the
reference is to a property that wasn’t explicitly set and uses the default value.

class bkl.expr.RewritingVisitor
Bases: bkl.expr.Visitor

Base class for visitors that perform some changes to the expression.

RewritingVisitor is smart about the rewrites and if nothing changes, returns the same instance, instead of creating
an identical copy.

78 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

It also implements all Visitor methods to do the right thing by default, so you only need to override the ones that
are of interest. Default implementations of the others will do the right thing: for example, if an item in the list
is rewritten, the list() method will detect it and return a new list.

bool(e)
Called on BoolExpr expressions.

concat(e)
Called on ConcatExpr expressions.

if_(e)
Called on IfExpr expressions.

list(e)
Called on ListExpr expressions.

path(e)
Called on PathExpr expressions.

class bkl.expr.SymbolicFormatter
Bases: bkl.expr.Formatter

Formats into unambiguous symbolic representation of the expression.

bool(e)
Called on BoolExpr expressions.

bool_value(e)
Called on BoolValueExpr expressions.

concat(e)
Called on ConcatExpr expressions.

if_(e)
Called on IfExpr expressions.

list(e)
Called on ListExpr expressions.

literal(e)
Called on LiteralExpr expressions.

null(e)
Called on NullExpr expressions.

path(e)
Called on PathExpr expressions.

placeholder(e)
Called on PlaceholderExpr expressions.

class bkl.expr.Visitor
Bases: object

Implements visitor pattern for Expr expressions. This is abstract base class, derived classes must implement all
of its methods except visit(). The way visitors are used is that the caller calls visit() on the expression.

bool(e)
Called on BoolExpr expressions.

bool_value(e)
Called on BoolValueExpr expressions.

5.2. Reference 79

Bakefile, Release 1.2.5.1

concat(e)
Called on ConcatExpr expressions.

if_(e)
Called on IfExpr expressions.

list(e)
Called on ListExpr expressions.

literal(e)
Called on LiteralExpr expressions.

noop(e)
Helper to quickly implement handler functions that do nothing.

null(e)
Called on NullExpr expressions.

path(e)
Called on PathExpr expressions.

placeholder(e)
Called on PlaceholderExpr expressions.

reference(e)
Called on ReferenceExpr expressions.

visit(e)
Call this method to visit expression e. One of object’s “callback” methods will be called, depending on e’s
type.

Return value is the value returned by the appropriate callback and is typically None.

visit_children(e)
Helper to implement visitor methods that just need to recursively work on all children. Ignores return value
for the children.

bkl.expr.add_prefix(prefix, e)
Adds a prefix in front of the expression e or, if e is a list, in front of each of its elements.

Parameters

• prefix – The prefix to add; either an bkl.expr.Expr object or a string.

• e – The expression to add the prefix in front of.

bkl.expr.are_equal(a, b, _inside_cond=False)
Compares two expressions for equality.

Throws the CannotDetermineError exception if it cannot reliably determine equality.

bkl.expr.concat(*parts)
Concatenates all arguments and returns bkl.expr.ConcatExpr. The arguments may be expressions or
string literals.

bkl.expr.enum_possible_values(e, global_cond=None)
Returns all values that are possible, together with their respective conditions, as an iteratable of (condition, value)
tuples. The condition may be None if the value is always there, otherwise it is a boolean bkl.expr.Expr.

Note that this function returns possible elements for lists. It skips null expressions as well.

Parameters

• e – Expression to extract possible values from.

80 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

• global_cond – Optional condition expression (bkl.expr.Expr) to apply to all items.
If specified, then every tuple in returned list will have the condition set to either global_cond
(for unconditional items) or its combination with per-item condition.

bkl.expr.format_string(format, values)
Substitutes occurrences of “%(varname)” in the format string with values from the dictionary values, similarly
to the ‘%’ operator. Values in the dictionary may be either Expr objects or strings.

Note that there’s currently no way to escape “%” in such expressions.

bkl.expr.get_model_name_from_path(e)
Give an expression representing filename, return name suitable for model.SourceFile.name.

bkl.expr.split(e, sep)
Splits expression e into a list of expressions, using sep as the delimiter character. Works with conditional
expressions and variable references too.

bkl.expr.split_into_path(e)
Splits expression e into a list of expressions, using ‘/’ as the delimiter character. Returns a PathExpr. Works
with conditional expressions and variable references too.

bkl.vartypes – variables types

This module defines types interface as well as basic types. The types – i.e. objects derived from bkl.vartypes.
Type – are used to verify validity of variable values and other expressions.

class bkl.vartypes.AnyType
Bases: bkl.vartypes.Type

A fallback type that allows any value at all.

validate(e)
Validates if the expression e is of this type. If it isn’t, throws bkl.error.TypeError with description
of the error.

Note that this method transparently handles references and conditional expressions.

class bkl.vartypes.BoolType
Bases: bkl.vartypes.Type

Boolean value type. May be product of a boolean expression or one of the following literals with obvious
meanings: “true” or “false”.

class bkl.vartypes.EnumType(name, allowed_values)
Bases: bkl.vartypes.Type

Enum type. The value must be one of allowed values passed to the constructor.

allowed_values
List of allowed values (strings).

class bkl.vartypes.IdType
Bases: bkl.vartypes.Type

Type for target IDs.

class bkl.vartypes.ListType(item_type)
Bases: bkl.vartypes.Type

Type for a list of items of homogeneous type.

item_type
Type of items stored in the list (bkl.vartypes.Type instance).

5.2. Reference 81

Bakefile, Release 1.2.5.1

class bkl.vartypes.PathType
Bases: bkl.vartypes.Type

A file or directory name.

class bkl.vartypes.StringType
Bases: bkl.vartypes.Type

Any string value.

class bkl.vartypes.Type
Bases: object

Base class for all Bakefile types.

name
Human-readable name of the type, e.g. “path” or “bool”.

normalize(e)
Normalizes the expression e to be of this type, if it can be done. If it cannot be, does nothing.

Returns e if no normalization was done or a new expression with normalized form of e.

validate(e)
Validates if the expression e is of this type. If it isn’t, throws bkl.error.TypeError with description
of the error.

Note that this method transparently handles references and conditional expressions.

bkl.vartypes.guess_expr_type(e)
Attempts to guess type of the expression if it’s possible. Returns AnyType type if unsure.

bkl.vartypes.normalize_and_validate_bool_subexpressions(e)
Performs type normalization and validation steps for typed subexpressions, namely for IfExpr conditions and
boolean expressions.

bkl.vartypes.TheAnyType = <bkl.vartypes.AnyType object>
For efficiency, singleton instance of AnyType

bkl.api – public extensions API

class bkl.api.BuildNode(commands, inputs=[], outputs=[], name=None, source_pos=None)
Bases: object

BuildNode represents a single node in traditional make-style build graph. Bakefile’s model is higher-level than
that, its targets may represent entities that will be mapped into several makefile targets. But BuildNode is the
simplest element of build process: a list of commands to run together with dependencies that describe when to
run it and a list of outputs the commands create.

Node’s commands are executed if either a) some of its outputs doesn’t exist or b) any of the inputs was modified
since the last time the outputs were modified.

See also:

bkl.api.TargetType.get_build_subgraph(), bkl.api.BuildSubgraph

name
Name of build node. May be empty. If not empty and the node has no output files (i.e. is phony), then this
name is used in the generated makefiles. It is ignored in all other cases.

inputs
List of all inputs for this node. Its items are filenames (as bkl.expr.PathExpr expressions) or (phony)
target names.

82 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

outputs
List of all outputs this node generates. Its items are filenames (as bkl.expr.PathExpr expressions).

A node with no outputs is called phony.

commands:
List of commands to execute when the rebuild condition is met, as bkl.expr.Expr.

source_pos
Source code position of whatever code was the cause for the creation of this BuildNode (e.g. associated
source file), or None.

class bkl.api.BuildSubgraph(main, secondary=[])
Bases: object

BuildSubgraph is a collection of bkl.api.BuildNode nodes.

main
Primary build node of a target (e.g. its executable file).

secondary
A list of any secondary nodes needed to build the main nodes (e.g. object files for target’s source files).
May be empty.

all_nodes()
Yield all nodes included in the subgraph.

class bkl.api.CustomStep
Bases: bkl.api.Extension

Custom processing step that is applied to the loaded model.

Plugins of this kind can be used to perform any custom operations with the model. For example, they may
enforce coding style, they may add or modify some properties or even generate auxiliary output files.

CustomStep class has several hook methods called at different phases of processing. All of them do nothing by
default and reimplementing them is optional.

finalize(model)
Called after loading the model from file(s) and before doing any optimizations or error checking on it.

Do not create any output files here, leave that to generate().

generate(model)
Called right before generating the output. It is called on the common model, before optimizing it for
individual toolsets.

It is permitted to create output files in this method.

class bkl.api.Extension
Bases: object

Base class for all Bakefile extensions.

Extensions are singletons, there’s always only one instance of given extension at runtime. Use the get() method
called on appropriate extension type to obtain it. For example:

program = TargetType.get(“program”) # . . . do something with it. . .

name
Use-visible name of the extension. For example, the name for targets extensions is what is used in target
declarations; likewise for property names.

classmethod all()
Returns iterator over instances of all implementations of this extension type.

5.2. Reference 83

Bakefile, Release 1.2.5.1

classmethod all_names()
Returns names of all implementations of this extension type.

classmethod all_properties(kind=’properties’)
For derived extension types that have properties e.g. TargetType), returns iterator over all properties.

The class must have class member variable var:properties with a list of bkl.api.Property instances.
Base class’ properties are automagically scanned too.

Parameters kind – Kind (i.e. attribute name) of the properties to list. By default, “properties”,
but may be more specific, e.g. “properties_module” or “properties_vs2010”.

See also:

bkl.api.Property

classmethod all_properties_kinds()
Returns a set of names of all properties attributes in this class. These are attributes named “properties” or
“properties_<something>”, e.g. “properties_module” for properties with module scope.

classmethod get(name=None)
This class method is used to get an instance of an extension. In can be used in one of two ways:

1. When called on an extension type class with name argument, it returns instance of extension with
given name and of the extension type on which this classmethod was called:

>>> bkl.api.Toolset.get("gnu")
<bkl.plugins.gnu.GnuToolset object at 0x2232950>

2. When called without the name argument, it must be called on particular extension class and returns
its (singleton) instance:

>>> GnuToolset.get()
<bkl.plugins.gnu.GnuToolset object at 0x2232950>

Parameters name – Name of the extension to read; this corresponds to class’ “name” attribute.
If not specified, then get() must be called on a extension, not extension base class.

class bkl.api.FileCompiler
Bases: bkl.api.Extension

In Bakefile API, FileCompiler is used to define all compilation steps.

Traditionally, the term compiler is used for a tool that compiles source code into object files. In Bakefile, a file
compiler is generalization of this term: it’s a tool that compiles file or files of one object type into one or more
files of another type. In this meaning, a C/C++ compiler is a file compiler, but so is a linker (it “compiles” object
files into executables) or e.g. Lex/Yacc compiler or Qt’s MOC preprocessor.

commands(toolset, target, input, output)
Returns list of commands (as bkl.expr.Expr) to invoke the compiler.

Parameters

• toolset – Toolset used.

• target – The target object for which the invocation is done.

• input – Input file (bkl.expr.PathExpr) or files (bkl.expr.ListExpr), de-
pending on cardinality.

• output – bkl.expr.Expr expression with the name of output file.

84 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

is_supported(toolset)
Returns whether given toolset is supported by this compiler.

Default implementation returns True for all toolsets.

cardinality = '1'
Cardinality of the compiler. That is, whether it compiles one file into one file (FileCompiler.
ONE_TO_ONE, e.g. C compilers) or whether it compiles many files of the same type into one output
file (FileCompiler.MANY_TO_ONE, e.g. the linker or Java compiler).

in_type = None
bkl.api.FileType for compiler’s input file.

out_type = None
bkl.api.FileType for compiler’s output file.

class bkl.api.FileRecognizer
Bases: object

Mixin base class for extensions that handle certain file types and need to be associated with a file automatically.
The class provides easy to use get_for_file() mechanism.

To use this class, derive from both bkl.api.Extension and this one.

detect(filename)
Returns True if the file filename is supported by the class. Note that it is only called if the file has one of
the extensions listed in extensions. By default, returns True.

Parameters filename – Name of the file to check. Note that this is native filename (as a
string) and points to existing file.

classmethod get_for_file(filename)
Returns appropriate implementation of the class for given file.

Throws bkl.error.UnsupportedError if no implementation could be found.

Parameters filename – Name of the file, as a native path.

extensions = []
List of file extensions recognized by this extension, without dots (e.g. ["vcproj", "vcxproj"]).

class bkl.api.FileType(extensions=[])
Bases: bkl.api.Extension, bkl.api.FileRecognizer

Description of a file type. File types are used by bkl.api.FileCompiler to define both input and output
files.

extensions
List of extensions for this file type, e.g. ["cpp", "cxx", "cc"].

class bkl.api.Property(name, type, default=None, readonly=False, inheritable=False, doc=None)
Bases: object

Properties describe variables on targets etc. that are part of the API – that is, they have special meaning for the
toolset and. Unlike free-form variables, properties have a type associated with them and any values assigned to
them are checked for type correctness. They can optionally have a default value, too.

name
Name of the property/variable.

type
Type of the property, as bkl.vartypes.Type instance.

5.2. Reference 85

Bakefile, Release 1.2.5.1

default
Default value of the property (as bkl.expr.Expr or a function that returns an expression) or None. If
not specified (i.e. None), then this property is required and must always be set to a value in the bakefile.

readonly
Indicates if the property is read-only. Read-only properties can only have the default value and cannot be
modified. They are typically derived from some other value and exist as a convenience. An example of
read-only property is the id property on targets.

scopes
Optional scope of the property, as list of strings. Each item may be one of Property.
SCOPE_PROJECT, Property.SCOPE_MODULE, Property.SCOPE_TARGET for any target or tar-
get type name (e.g. program) for scoping on specific target name.

Finally, may be None for default (depending from where the property was obtained from).

inheritable
A property is inheritable if its value can be specified in the (grand-)parent scope. For example, an inheri-
table property on a target may be specified at the module level or even in the parent module; an iheritable
property on a source file (e.g. “defines”) may be specified on the target, the module and so on.

toolsets
List of toolset names for toolsets this property applies to. This is mostly for documentation purposes, it
doesn’t affect their processing. Is None for toolset-agnostic properties.

doc
Optional documentation for the property.

Example usage:

class FooTarget(bkl.api.TargetType):
name = "foo"
properties = [

Property("deps",
type=ListType(IdType()),
default=[],
doc="Target's dependencies (list of IDs).")

]
...

default_expr(for_obj, throw_if_required)
Returns the value of default expression. Always returns an bkl.expr.Expr instance, even if the
default is of a different type.

Parameters

• for_obj – The class:bkl.model.ModelPart object to return the default for. If the default
value is defined, its expression is evaluated in the context of for_obj.

• throw_if_required – If False, returns NullExpr if the property is a required one
(doesn’t have a default value). If True, throws in that case.

internal
True if the property is for internal purposes and shouldn’t be used by users, False otherwise.

class bkl.api.TargetType
Bases: bkl.api.Extension

Base class for implementation of a new target type.

86 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

get_build_subgraph(toolset, target)
Returns a bkl.api.BuildSubgraph object with description of this target’s local part of build graph
– that is, its part needed to produce output files associated with this target.

Usually, a BuildSubgraph with just one main BuildNode will be returned, but it’s possible to have Target-
Types that correspond to more than one makefile target (e.g. libtool-style libraries or gettext catalogs).

Parameters

• toolset – The toolset used (bkl.api.Toolset).

• target – Target instance (bkl.model.Target).

vs_project(toolset, target)
Returns Visual Studio project file object (derived from bkl.plugins.vsbase.VSProjectBase) if
the target type can be implemented as a Visual Studio project.

Implementing this method is strictly optional.

properties = []
List of all properties supported on this target type, as Property instances. Note that properties list is
automagically inherited from base classes, if any.

class bkl.api.Toolset
Bases: bkl.api.Extension

This class encapsulates generating of the project files or makefiles.

The term “toolset” refers to collection of tools (compiler, linker, make, IDE, . . .) used to compile programs. For
example, “Visual C++ 2008”, “Visual C++ 2005”, “Xcode” or “Borland C++” are toolsets.

In Bakefile API, this class is responsible for creation of the output. It puts all the components (platform-specific
commands, make syntax, compiler invocation, . . .) together and writes out the makefiles or projects.

generate(project)
Generates all output files for this toolset.

Parameters project – model.Project instance with complete description of the output. It was
already preprocessed to remove content not relevant for this toolset (e.g. targets or sub-
modules built conditionally only for other toolsets, conditionals that are always true or false
within the toolset and so on).

get_builddir_for(target)
Returns build directory used for target.

Returned value must be a bkl.expr.PathExpr expression object, but it doesn’t have to be a constant
(for example, it may reference configuration name, as e.g. Visual Studio does).

The function is called after the model is fully loaded and partially simplified, on a model already special-
ized for this toolset only. It is used to replace path expression with the relative @builddir anchor with
absolute paths.

properties = []
List of all properties supported on this target type, as Property instances. Note that properties list is
automagically inherited from base classes, if any.

bkl.error – exceptions and errors handling

This module contains helper classes for simple handling of errors. In particular, the Error class keeps track of the
position in source code where the error occurred or to which it relates to.

5.2. Reference 87

Bakefile, Release 1.2.5.1

exception bkl.error.CannotDetermineError(msg=None, pos=None)
Bases: bkl.error.NonConstError

Exception thrown when something (e.g. equality) cannot be determined. This usually signifies a weakness in
Bakefile implementation that should be improved.

exception bkl.error.Error(msg, pos=None)
Bases: exceptions.Exception

Base class for all Bakefile errors.

When converted to string, the message is formatted in the usual way of compilers, as file:line: error.

msg
Error message to show to the user.

pos
bkl.parser.ast.Position object with location of the error. May be None.

exception bkl.error.NonConstError(msg, pos=None)
Bases: bkl.error.Error

Exception thrown when attempting to convert an expression into bake-time constant.

exception bkl.error.NotFoundError(msg, pos=None)
Bases: bkl.error.Error

Exception thrown when a property or variable wasn’t found at all.

exception bkl.error.ParserError(msg, pos=None)
Bases: bkl.error.Error

Exception class for errors encountered by the Bakefile parser.

exception bkl.error.TypeError(type, expr, msg=None, pos=None)
Bases: bkl.error.Error

Exception class for variable type errors.

detail
Any extra details about the error or (usually) None.

See also:

bkl.vartypes.Type

Convenience constructor creates error message appropriate for the type and expression test, in the form of
expression expr is not type or expression expr is not type: msg if additional mes-
sage is supplied.

Parameters

• type – bkl.vartypes.Type instance the error is related to.

• expr – bkl.expr.Expr expression that caused the error.

• msg – Optional error message detailing reasons for the error. This will be stored as detail
if provided.

exception bkl.error.UndefinedError(msg, pos=None)
Bases: bkl.error.Error

Exception thrown when a property or variable is undefined, i.e. doesn’t have a value.

88 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

exception bkl.error.UnsupportedError(msg, pos=None)
Bases: bkl.error.Error

Exception class for errors when something is unsupported, e.g. unrecognized file extension.

exception bkl.error.VersionError(msg, pos=None)
Bases: bkl.error.Error

Exception raised when Bakefile version is too old for the input.

class bkl.error.error_context(context)
Error context for adding positional information to exceptions thrown without one. This can happen in some
situations when the particular expression causing the error isn’t available. In such situations, it’s much better to
provide coarse position information (e.g. a target) instead of not providing any at all.

Usage:

with error_context(target):
...do something that may throw...

pos
bkl.parser.ast.Position object with location of the error. May be None.

bkl.error.warning(msg, *args, **kwargs)
Logs a warning.

The function takes position arguments similarly to logging module’s functions. It also accepts options pos
argument with position information as bkl.parser.ast.Position.

Uses active error_context instances to decorate the warning with position information if not provided.

Usage:

bkl.error.warning("target %s not supported", t.name, pos=t.source_pos)

bkl.io – I/O helpers

Helper classes for Bakefile I/O. Manages atomic writing of output, detecting changes, line endings conversions etc.

class bkl.io.OutputFile(filename, eol, charset=’utf-8’, creator=None, create_for=None)
Bases: object

File to be written by Bakefile.

Example usage:

f = io.OutputFile("Makefile")
f.write(body)
f.commit()

Notice the need to explicitly call commit().

Creates output file.

Parameters

• filename – Name of the output file. Should be either relative to CWD or absolute; the
latter is recommended.

• eol – Line endings to use. One of EOL_WINDOWS and EOL_UNIX.

• charset – Charset to use if Unicode string is passed to write().

5.2. Reference 89

Bakefile, Release 1.2.5.1

• creator – Who is creating the file; typically toolset object.

• create_for – Object the file is created for, e.g. a module or a target.

replace(placeholder, value)
Replaces the value of the given placeholder with its real value. This is useful for parts of the output which
are not known at the time they are written because they depend on other parts coming after them.

Notice that only the first occurrency of the placeholder is replaced.

write(text)
Writes text to the output, performing line endings conversion as needed. Note that the changes don’t take
effect until you call commit().

bkl.makefile – support for implementing makefiles toolsets

Foundation code for makefile-based toolsets.

All makefile-based toolsets should derive from MakefileToolset defined in this module.

class bkl.makefile.MakefileExprFormatter(paths_info)
Bases: bkl.expr.Formatter

literal(e)
Called on LiteralExpr expressions.

placeholder(e)
Called on PlaceholderExpr expressions.

class bkl.makefile.MakefileFormatter
Bases: bkl.api.Extension

MakefileFormatter extensions are used to format makefiles content (i.e. targets and their commands) in the
particular makefiles format.

This includes things such as expressing conditional content, referencing variables and so on.

Note that formatters do not handle platform- or compiler-specific things, e.g. path separators or compiler invo-
cation. There are done by bkl.expr.Formatter and bkl.api.FileCompiler classes.

This base class implements methods that are common for most make variants; derived classes can override them
and they must implement the rest.

comment(text)
Returns given (possibly multi-line) string formatted as a comment.

Parameters text – text of the comment

multifile_target(outfiles, deps, commands)
Returns string with target definition for targets that produce multiple files. A typical example is Bison
parser generator, which produces both .c and .h files.

Parameters

• outfiles – List of output files of the rule, as strings.

• deps – See target()

• commands – See target()

submake_command(directory, filename, target)
Returns string with command to invoke make in subdirectory directory on makefile filename, running
target.

90 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

target(name, deps, commands)
Returns string with target definition.

Parameters

• name – Name of the target.

• deps – List of its dependencies. Items are strings corresponding to some target’s name
(may be expressions that reference a variable, in that case the string must already be for-
matted with appropriate bkl.expr.Formatter). May be empty.

• commands – List of commands to execute to build the target; they are already formatted
to be in make’s syntax and each command in the list is single-line shell command. May
be None.

var_definition(var, value)
Returns string with definition of a variable value, typically var = value.

Parameters

• var – variable being defined

• value – value of the variable; this string is already formatted to be in make’s syntax and
may be multi-line

class bkl.makefile.MakefileToolset
Bases: bkl.api.Toolset

Base class for makefile-based toolsets.

ExprFormatter
expr.Formatter-derived class for this toolset.

alias of MakefileExprFormatter

generate(project)
Generates all output files for this toolset.

Parameters project – model.Project instance with complete description of the output. It was
already preprocessed to remove content not relevant for this toolset (e.g. targets or sub-
modules built conditionally only for other toolsets, conditionals that are always true or false
within the toolset and so on).

get_builddir_for(target)
Returns build directory used for target.

Returned value must be a bkl.expr.PathExpr expression object, but it doesn’t have to be a constant
(for example, it may reference configuration name, as e.g. Visual Studio does).

The function is called after the model is fully loaded and partially simplified, on a model already special-
ized for this toolset only. It is used to replace path expression with the relative @builddir anchor with
absolute paths.

on_footer(file, module)
Called at the end of generating the output to add any ending text, for example unconditional inclusion of
dependencies tracking code.

on_header(file, module)
Called before starting generating the output to add any header text, typically used to pre-define any make
variables.

Call the base class version first to insert a warning about the file being auto-generated.

5.2. Reference 91

Bakefile, Release 1.2.5.1

on_phony_targets(file, targets)
Called with a list of all phony (i.e. not producing actual files) targets (as their names as strings) when
generating given file.

Formatter = None
MakefileFormatter-derived class for this toolset.

autoclean_extensions = []
Files with extensions from this list will be automatically deleted by “make clean”.

default_makefile = None
Default filename from output makefile.

del_command = None
Command used to delete files

bkl.compilers – FileCompiler helpers

Helpers for working with bkl.api.FileType and bkl.api.FileCompiler extensions.

class bkl.compilers.CFileType
Bases: bkl.api.FileType

class bkl.compilers.CxxFileType
Bases: bkl.api.FileType

class bkl.compilers.NativeLibFileType(extensions=[])
Bases: bkl.api.FileType

class bkl.compilers.NativeLoadableModuleFileType(extensions=[])
Bases: bkl.api.FileType

class bkl.compilers.NativeProgramFileType(extensions=[])
Bases: bkl.api.FileType

class bkl.compilers.NativeSharedLibraryFileType(extensions=[])
Bases: bkl.api.FileType

bkl.compilers.disambiguate_intermediate_file_names(files)
Given a list of SourceFile objects, finds files that would have conflicting object file names (e.g. foo/x.cpp and
bar/x.cpp would use the same x.obj filename).

Returns dictionary with SourceFile objects as keys and unambiguous basenames (e.g. ‘x_foo’ and ‘x_bar’ for
the above example). Only files with conflicts are included in the dictionary (consequently, it will be empty or
near-empty most of the time).

bkl.compilers.get_compilation_subgraph(toolset, target, ft_to, outfile)
Given list of source files (as bkl.expr.ListExpr), produces build subgraph (bkl.api.
BuildSubgraph) with appropriate bkl.api.BuildNode nodes.

Parameters

• toolset – The toolset used (as bkl.api.Toolset).

• target – The target object for which the invocation is done.

• ft_to – Type of the output file to compile to.

• outfile – Name of the output file (as bkl.expr.PathExpr).

bkl.compilers.get_compiler(toolset, ft_from, ft_to)
Finds the compiler that compiles files of type ft_from into ft_to. Both arguments are bkl.api.FileType
instances.

92 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

The returned object is a singleton. If such compiler cannot be found, returns None.

bkl.compilers.get_file_type(extension)
Returns file type instance based on extension.

The returned object is a singleton.

>>> a = get_file_type("cpp")
>>> b = get_file_type("cpp")
>>> assert a is b

bkl.compilers.get_file_types_compilable_into(toolset, ft)
Returns file types that can be compiled into ft.

5.2.2 Internals reference documentation

bkl – bootstrapping Bakefile

bkl.parser – language parser

bkl.parser.get_parser(code, filename=None)
Prepares Bakefile parser for parsing given Bakefile code from string argument passed in. The optional filename
argument allows specifying input file name for the purpose of errors reporting.

bkl.parser.parse(code, filename=None, detect_compatibility_errors=True)
Reads Bakefile code from string argument passed in and returns parsed AST. The optional filename argument
allows specifying input file name for the purpose of errors reporting.

bkl.parser.ast – AST representation

class bkl.parser.ast.AndNode(payload)
Bases: bkl.parser.ast.BoolNode

class bkl.parser.ast.AppendNode(payload)
Bases: bkl.parser.ast.AssignmentNode

Assignment of value to a variable by appending (operator +=).

class bkl.parser.ast.AssignmentNode(payload)
Bases: bkl.parser.ast.Node

Assignment of value to a variable.

lvalue
Variable assigning to, LvalueNode

value
Value being assigned.

class bkl.parser.ast.BaseListNode(payload)
Bases: bkl.parser.ast.Node

List of base templates.

names
List of strings with base names

class bkl.parser.ast.BoolNode(payload)
Bases: bkl.parser.ast.Node

5.2. Reference 93

Bakefile, Release 1.2.5.1

left
Left operand

operator
Boolean operator (token type, e.g. AND)

right
Right operand

class bkl.parser.ast.BoolvalNode(payload)
Bases: bkl.parser.ast.Node

Boolean constant (true/false).

value
Value of the node, as boolean

class bkl.parser.ast.ConcatNode(payload)
Bases: bkl.parser.ast.Node

Concatenation of several parts, to form single string.

values
List of fragments.

class bkl.parser.ast.ConfigurationNode(payload)
Bases: bkl.parser.ast.Node

Definition of a configuration.

base
Name of the base configuration or None

content
Other content: variables assignments and such

name
Name of the configuration

class bkl.parser.ast.EqualNode(payload)
Bases: bkl.parser.ast.BoolNode

class bkl.parser.ast.FilesListNode(payload)
Bases: bkl.parser.ast.Node

Setting of sources/headers.

files
List of files.

kind
Sources/headers

class bkl.parser.ast.IdNode(payload)
Bases: bkl.parser.ast.Node

Identifier (variable, target, template, . . .).

class bkl.parser.ast.IfNode(payload)
Bases: bkl.parser.ast.Node

Conditional content node – “if” statement.

cond
Condition expression

94 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

content
Conditional statements

class bkl.parser.ast.ImportNode(payload)
Bases: bkl.parser.ast.Node

Textual inclusion of a file.

file
File to include

class bkl.parser.ast.ListNode(payload)
Bases: bkl.parser.ast.Node

Right side of variable assignment, contains list of values (LiteralNode, VarReferenceNode etc.).

values
List of values in the assignment. May be single value, maybe be multiple values, code using this must
correctly interpret it and check values’ types.

class bkl.parser.ast.LiteralNode(payload)
Bases: bkl.parser.ast.Node

Single value, i.e. literal.

text
Text of the value, as string.

class bkl.parser.ast.LvalueNode(payload)
Bases: bkl.parser.ast.Node

Left side of assignment.

scope
List of scope identifiers; first one may be None for global.

var
Variable assigning to

class bkl.parser.ast.NilNode(payload=None)
Bases: bkl.parser.ast.Node

Empty node.

class bkl.parser.ast.Node(payload)
Bases: antlr3.tree.CommonTree

Base class for Bakefile AST tree node.

toString()
Override to say how a node (not a tree) should look as text

toStringTree(indent=”)
Print out a whole tree not just a node

class bkl.parser.ast.NotEqualNode(payload)
Bases: bkl.parser.ast.BoolNode

class bkl.parser.ast.NotNode(payload)
Bases: bkl.parser.ast.BoolNode

class bkl.parser.ast.OrNode(payload)
Bases: bkl.parser.ast.BoolNode

5.2. Reference 95

Bakefile, Release 1.2.5.1

class bkl.parser.ast.PathAnchorNode(payload)
Bases: bkl.parser.ast.LiteralNode

A literal with path anchor (@srcdir etc.).

class bkl.parser.ast.PluginNode(payload)
Bases: bkl.parser.ast.Node

Inclusion of a plugin.

file
File with plugin code

class bkl.parser.ast.Position(filename=None, line=None, column=None)
Bases: object

Location of an error in input file.

All of its attributes are optional and may be None. Convert the object to string to get human-readable output.

filename
Name of the source file.

line
Line number.

column
Column on the line.

class bkl.parser.ast.RootNode(payload)
Bases: bkl.parser.ast.Node

Root node of loaded .bkl file.

class bkl.parser.ast.SettingNode(payload)
Bases: bkl.parser.ast.Node

Definition of a user setting.

content
Properties assignments and such

name
Name of the setting

class bkl.parser.ast.SrcdirNode(payload)
Bases: bkl.parser.ast.Node

Overriding of the @srcdir value.

srcdir
The new srcdir directory

class bkl.parser.ast.SubmoduleNode(payload)
Bases: bkl.parser.ast.Node

Inclusion of a submodule.

file
File with submodule definition

class bkl.parser.ast.TargetNode(payload)
Bases: bkl.parser.ast.Node

Creation of a makefile target.

96 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

base_templates
List of names of base templates

content
Other content: variables assignments and such

name
Name of the target

type
Type of the target

class bkl.parser.ast.TemplateNode(payload)
Bases: bkl.parser.ast.Node

Template definition node.

base_templates
List of names of base templates

content
Other content: variables assignments and such

name
Name of the target

class bkl.parser.ast.VarReferenceNode(payload)
Bases: bkl.parser.ast.Node

Reference to a variable.

var
Referenced variable

bkl.interpreter – language interpreter

This module contains the very core of Bakefile – the interpreter, bkl.interpreter.Interpreter, and its
supporting classes.

class bkl.interpreter.Interpreter
Bases: object

The interpreter is responsible for doing everything necessary to “translate” input .bkl files into generated
native makefiles. This includes building a project model from the input, checking it for correctness, optimizing
it and creating outputs for all enabled toolsets.

Interpreter provides both high-level interface for single-call usage (see process()) and other methods
with finer granularity that allows you to inspect individual steps (most useful for the test suite).

model
Model of the project, as bkl.model.Project. It’s state always reflects current state of processing.

toolsets_to_use
Set of toolsets to generate for. This list may contain only a subset of toolsets the bakefile is written for and
may even contain toolsets not specified in the bakefile.

If None (the default), then the toolsets listed in the bakefile are used.

add_module(ast, parent)
Adds parsed AST to the model, without doing any optimizations. May be called more than once, with
different parsed files.

Parameters ast – AST of the input file, as returned by bkl.parser.parse_file().

5.2. Reference 97

Bakefile, Release 1.2.5.1

finalize()
Finalizes the model, i.e. checks it for validity, optimizes, creates per-toolset models etc.

finalize_for_toolset(toolset_model, toolset)
Finalizes after “toolset” variable was set.

generate()
Generates output files.

generate_for_toolset(toolset, skip_making_copy=False)
Generates output for given toolset.

limit_toolsets(toolsets)
Sets toolsets_to_use.

make_toolset_specific_model(toolset, skip_making_copy=False)
Returns toolset-specific model, i.e. one that works only with toolset, has the toolset property set to it.
The caller still needs to call finalize_for_toolset() on it.

process(ast)
Interprets input file and generates the outputs.

Parameters ast – AST of the input file, as returned by bkl.parser.parse_file().

Processing is done in several phases:

1. Basic model is built (see bkl.interpreter.builder.Builder). No optimizations or checks
are performed at this point.

2. Several generic optimization and checking passes are run on the model. Among other things, types
correctness and other constraints are checked, variables are substituted and evaluated.

3. The model is split into several copies, one per output toolset.

4. Further optimization passes are done.

5. Output files are generated.

Step 1 is done by add_module(). Steps 2-4 are done by finalize() and step 5 is implemented in
generate().

process_file(filename)
Like process(), but takes filename as its argument.

class bkl.interpreter.builder.Builder(on_submodule=None)
Bases: object, bkl.expr.CondTrackingMixin

interpreter.Builder processes parsed AST and builds a project model from it.

It doesn’t do anything smart like optimizing things, it does only the minimal processing needed to produce a
valid, albeit suboptimal, model.

This includes checking variables scopes etc., but does not involve checks for type correctness. Passes further in
the bkl.interpreter.Interpreter pipeline handle that.

context
Current context. This is the inner-most bkl.model.ModelPart at the time of parsing. Initially, it is
set to a new bkl.model.Module instance by create_model(). When descending into a target, it
is temporarily set to said target and then restored and so on.

Constructor.

Parameters on_module – Callback to call (with filename as argument) on submodule state-
ment.

98 Chapter 5. Extending and developing Bakefile

Bakefile, Release 1.2.5.1

create_expression(ast, parent)
Creates bkl.epxr.Expr expression in given parent’s context.

create_model(ast, parent)
Returns constructed model, as bkl.model.Module instance.

handle_children(children, context)
Runs model creation of all children nodes.

Parameters

• children – List of AST nodes to treat as children.

• context – Context (aka “local scope”). Interpreter’s context is set to it for the dura-
tion of the call.

5.2. Reference 99

Bakefile, Release 1.2.5.1

100 Chapter 5. Extending and developing Bakefile

CHAPTER 6

Glossary

bake-time The moment when the Bakefile tool bkl is run to create native makefiles and projects. Nothing is com-
piled at this time, only the makefiles are created. Compare with make-time.

make-time The moment when a generated makefile, project or solution is used by the user to build their project.
Compare with bake-time.

101

Bakefile, Release 1.2.5.1

102 Chapter 6. Glossary

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

103

Bakefile, Release 1.2.5.1

104 Chapter 7. Indices and tables

Python Module Index

b
bkl, 93
bkl.api, 82
bkl.compilers, 92
bkl.error, 87
bkl.expr, 72
bkl.interpreter, 97
bkl.interpreter.builder, 98
bkl.io, 89
bkl.makefile, 90
bkl.model, 65
bkl.parser, 93
bkl.parser.ast, 93
bkl.vartypes, 81

105

Bakefile, Release 1.2.5.1

106 Python Module Index

Index

A
active_if_cond (bkl.expr.CondTrackingMixin attribute),

73
add_configuration() (bkl.model.Project method), 69
add_module() (bkl.interpreter.Interpreter method), 97
add_prefix() (in module bkl.expr), 80
add_template() (bkl.model.Project method), 69
add_variable() (bkl.model.ModelPart method), 66
all() (bkl.api.Extension class method), 83
all_names() (bkl.api.Extension class method), 83
all_nodes() (bkl.api.BuildSubgraph method), 83
all_properties() (bkl.api.Extension class method), 84
all_properties_kinds() (bkl.api.Extension class method),

84
all_targets() (bkl.model.Project method), 69
all_variables() (bkl.model.ModelPart method), 66
allowed_values (bkl.vartypes.EnumType attribute), 81
anchor (bkl.expr.PathExpr attribute), 76
anchor_file (bkl.expr.PathExpr attribute), 77
AND (bkl.expr.BoolExpr attribute), 72
AndNode (class in bkl.parser.ast), 93
AnyType (class in bkl.vartypes), 81
AppendNode (class in bkl.parser.ast), 93
apply_subst() (bkl.model.ConfigurationProxy method),

66
are_equal() (in module bkl.expr), 80
as_native_path() (bkl.expr.PathExpr method), 77
as_native_path_for_output() (bkl.expr.PathExpr method),

77
as_py() (bkl.expr.BoolExpr method), 72
as_py() (bkl.expr.BoolValueExpr method), 73
as_py() (bkl.expr.ConcatExpr method), 73
as_py() (bkl.expr.Expr method), 73
as_py() (bkl.expr.IfExpr method), 75
as_py() (bkl.expr.ListExpr method), 75
as_py() (bkl.expr.LiteralExpr method), 75
as_py() (bkl.expr.NullExpr method), 75
as_py() (bkl.expr.PathExpr method), 77
as_py() (bkl.expr.PlaceholderExpr method), 78

as_py() (bkl.expr.ReferenceExpr method), 78
as_symbolic() (bkl.expr.Expr method), 73
AssignmentNode (class in bkl.parser.ast), 93
autoclean_extensions (bkl.makefile.MakefileToolset at-

tribute), 92

B
bake-time, 101
base (bkl.model.Configuration attribute), 65
base (bkl.parser.ast.ConfigurationNode attribute), 94
base_templates (bkl.parser.ast.TargetNode attribute), 96
base_templates (bkl.parser.ast.TemplateNode attribute),

97
BaseListNode (class in bkl.parser.ast), 93
bases (bkl.model.Template attribute), 71
bkl (module), 93
bkl.api (module), 82
bkl.compilers (module), 92
bkl.error (module), 87
bkl.expr (module), 72
bkl.interpreter (module), 97
bkl.interpreter.builder (module), 98
bkl.io (module), 89
bkl.makefile (module), 90
bkl.model (module), 65
bkl.parser (module), 93
bkl.parser.ast (module), 93
bkl.vartypes (module), 81
bool() (bkl.expr.Formatter method), 74
bool() (bkl.expr.RewritingVisitor method), 79
bool() (bkl.expr.SymbolicFormatter method), 79
bool() (bkl.expr.Visitor method), 79
bool_value() (bkl.expr.Formatter method), 74
bool_value() (bkl.expr.SymbolicFormatter method), 79
bool_value() (bkl.expr.Visitor method), 79
BoolExpr (class in bkl.expr), 72
BoolNode (class in bkl.parser.ast), 93
BoolType (class in bkl.vartypes), 81
BoolvalNode (class in bkl.parser.ast), 94
BoolValueExpr (class in bkl.expr), 72

107

Bakefile, Release 1.2.5.1

builddir (bkl.expr.PathAnchorsInfo attribute), 76
builddir_abs (bkl.expr.PathAnchorsInfo attribute), 76
Builder (class in bkl.interpreter.builder), 98
BuildNode (class in bkl.api), 82
BuildSubgraph (class in bkl.api), 83

C
CannotDetermineError, 87
cardinality (bkl.api.FileCompiler attribute), 85
CFileType (class in bkl.compilers), 92
change_extension() (bkl.expr.PathExpr method), 77
child_parts() (bkl.model.ModelPart method), 66
child_parts() (bkl.model.Module method), 68
child_parts() (bkl.model.Project method), 69
child_parts() (bkl.model.Setting method), 70
child_parts() (bkl.model.SourceFile method), 70
child_parts() (bkl.model.Target method), 71
clone() (bkl.model.Project method), 69
column (bkl.parser.ast.Position attribute), 96
commands() (bkl.api.FileCompiler method), 84
comment() (bkl.makefile.MakefileFormatter method), 90
components (bkl.expr.PathExpr attribute), 76
concat() (bkl.expr.Formatter method), 74
concat() (bkl.expr.RewritingVisitor method), 79
concat() (bkl.expr.SymbolicFormatter method), 79
concat() (bkl.expr.Visitor method), 79
concat() (in module bkl.expr), 80
ConcatExpr (class in bkl.expr), 73
ConcatNode (class in bkl.parser.ast), 94
cond (bkl.expr.IfExpr attribute), 74
cond (bkl.parser.ast.IfNode attribute), 94
condition (bkl.model.ModelPart attribute), 68
CondTrackingMixin (class in bkl.expr), 73
Configuration (class in bkl.model), 65
ConfigurationNode (class in bkl.parser.ast), 94
ConfigurationProxy (class in bkl.model), 66
configurations (bkl.model.ConfigurationsPropertyMixin

attribute), 66
configurations (bkl.model.Project attribute), 69
ConfigurationsPropertyMixin (class in bkl.model), 66
content (bkl.parser.ast.ConfigurationNode attribute), 94
content (bkl.parser.ast.IfNode attribute), 94
content (bkl.parser.ast.SettingNode attribute), 96
content (bkl.parser.ast.TargetNode attribute), 97
content (bkl.parser.ast.TemplateNode attribute), 97
context (bkl.expr.ReferenceExpr attribute), 78
context (bkl.interpreter.builder.Builder attribute), 98
create_derived() (bkl.model.Configuration method), 65
create_expression() (bkl.interpreter.builder.Builder

method), 98
create_model() (bkl.interpreter.builder.Builder method),

99
CustomStep (class in bkl.api), 83
CxxFileType (class in bkl.compilers), 92

D
default (bkl.api.Property attribute), 85
default_expr() (bkl.api.Property method), 86
default_makefile (bkl.makefile.MakefileToolset attribute),

92
del_command (bkl.makefile.MakefileToolset attribute),

92
derived_from() (bkl.model.Configuration method), 65
detail (bkl.error.TypeError attribute), 88
detect() (bkl.api.FileRecognizer method), 85
dirsep (bkl.expr.PathAnchorsInfo attribute), 76
disambiguate_intermediate_file_names() (in module

bkl.compilers), 92
doc (bkl.api.Property attribute), 86

E
enum_possible_values() (in module bkl.expr), 80
enum_props() (bkl.model.ModelPart method), 66
enum_props() (bkl.model.Module method), 68
enum_props() (bkl.model.Project method), 69
enum_props() (bkl.model.Setting method), 70
enum_props() (bkl.model.SourceFile method), 70
enum_props() (bkl.model.Target method), 71
EnumType (class in bkl.vartypes), 81
EQUAL (bkl.expr.BoolExpr attribute), 72
EqualNode (class in bkl.parser.ast), 94
Error, 88
error_context (class in bkl.error), 89
Expr (class in bkl.expr), 73
ExprFormatter (bkl.makefile.MakefileToolset attribute),

91
Extension (class in bkl.api), 83
extensions (bkl.api.FileRecognizer attribute), 85
extensions (bkl.api.FileType attribute), 85

F
file (bkl.parser.ast.ImportNode attribute), 95
file (bkl.parser.ast.PluginNode attribute), 96
file (bkl.parser.ast.SubmoduleNode attribute), 96
FileCompiler (class in bkl.api), 84
filename (bkl.parser.ast.Position attribute), 96
FileRecognizer (class in bkl.api), 85
files (bkl.parser.ast.FilesListNode attribute), 94
FilesListNode (class in bkl.parser.ast), 94
FileType (class in bkl.api), 85
finalize() (bkl.api.CustomStep method), 83
finalize() (bkl.interpreter.Interpreter method), 98
finalize_for_toolset() (bkl.interpreter.Interpreter method),

98
format() (bkl.expr.Formatter method), 74
format_string() (in module bkl.expr), 81
Formatter (bkl.makefile.MakefileToolset attribute), 92
Formatter (class in bkl.expr), 74

108 Index

Bakefile, Release 1.2.5.1

from_property() (bkl.model.Variable static method), 71

G
generate() (bkl.api.CustomStep method), 83
generate() (bkl.api.Toolset method), 87
generate() (bkl.interpreter.Interpreter method), 98
generate() (bkl.makefile.MakefileToolset method), 91
generate_for_toolset() (bkl.interpreter.Interpreter

method), 98
get() (bkl.api.Extension class method), 84
get_basename() (bkl.expr.PathExpr method), 77
get_build_subgraph() (bkl.api.TargetType method), 86
get_builddir_for() (bkl.api.Toolset method), 87
get_builddir_for() (bkl.makefile.MakefileToolset

method), 91
get_child_part_by_name() (bkl.model.ModelPart

method), 67
get_compilation_subgraph() (in module bkl.compilers),

92
get_compiler() (in module bkl.compilers), 92
get_directory_path() (bkl.expr.PathExpr method), 77
get_extension() (bkl.expr.PathExpr method), 77
get_file_type() (in module bkl.compilers), 93
get_file_types_compilable_into() (in module

bkl.compilers), 93
get_for_file() (bkl.api.FileRecognizer class method), 85
get_matching_prop_with_inheritance()

(bkl.model.ModelPart method), 67
get_model_name_from_path() (in module bkl.expr), 81
get_parser() (in module bkl.parser), 93
get_prop() (bkl.model.ModelPart method), 67
get_target() (bkl.model.Project method), 69
get_value() (bkl.expr.IfExpr method), 75
get_value() (bkl.expr.ReferenceExpr method), 78
get_variable() (bkl.expr.ReferenceExpr method), 78
get_variable() (bkl.model.ModelPart method), 67
get_variable_value() (bkl.model.ModelPart method), 67
guess_expr_type() (in module bkl.vartypes), 82

H
handle_children() (bkl.interpreter.builder.Builder

method), 99
has_bool_operands() (bkl.expr.BoolExpr method), 72
has_target() (bkl.model.Project method), 69
headers (bkl.model.Target attribute), 71

I
IdNode (class in bkl.parser.ast), 94
IdType (class in bkl.vartypes), 81
if_() (bkl.expr.Formatter method), 74
if_() (bkl.expr.RewritingVisitor method), 79
if_() (bkl.expr.SymbolicFormatter method), 79
if_() (bkl.expr.Visitor method), 80
if_() (bkl.model.ProxyIfResolver method), 70

IfExpr (class in bkl.expr), 74
IfNode (class in bkl.parser.ast), 94
ImportNode (class in bkl.parser.ast), 95
imports (bkl.model.Module attribute), 68
in_type (bkl.api.FileCompiler attribute), 85
inheritable (bkl.api.Property attribute), 86
inputs (bkl.api.BuildNode attribute), 82
internal (bkl.api.Property attribute), 86
Interpreter (class in bkl.interpreter), 97
is_const() (bkl.expr.Expr method), 73
is_debug (bkl.model.Configuration attribute), 65
is_explicitly_set (bkl.model.Variable attribute), 71
is_external_absolute() (bkl.expr.PathExpr method), 77
is_null() (bkl.expr.Expr method), 74
is_property (bkl.model.Variable attribute), 71
is_submodule_of() (bkl.model.Module method), 69
is_supported() (bkl.api.FileCompiler method), 84
is_variable_explicitly_set() (bkl.model.ModelPart

method), 67
is_variable_null() (bkl.model.ModelPart method), 67
item_type (bkl.vartypes.ListType attribute), 81

K
kind (bkl.parser.ast.FilesListNode attribute), 94

L
left (bkl.expr.BoolExpr attribute), 72
left (bkl.parser.ast.BoolNode attribute), 93
limit_toolsets() (bkl.interpreter.Interpreter method), 98
line (bkl.parser.ast.Position attribute), 96
list() (bkl.expr.Formatter method), 74
list() (bkl.expr.RewritingVisitor method), 79
list() (bkl.expr.SymbolicFormatter method), 79
list() (bkl.expr.Visitor method), 80
list_sep (bkl.expr.Formatter attribute), 74
ListExpr (class in bkl.expr), 75
ListNode (class in bkl.parser.ast), 95
ListType (class in bkl.vartypes), 81
literal() (bkl.expr.Formatter method), 74
literal() (bkl.expr.SymbolicFormatter method), 79
literal() (bkl.expr.Visitor method), 80
literal() (bkl.makefile.MakefileExprFormatter method),

90
LiteralExpr (class in bkl.expr), 75
LiteralNode (class in bkl.parser.ast), 95
lvalue (bkl.parser.ast.AssignmentNode attribute), 93
LvalueNode (class in bkl.parser.ast), 95

M
main (bkl.api.BuildSubgraph attribute), 83
make-time, 101
make_toolset_specific_model()

(bkl.interpreter.Interpreter method), 98

Index 109

Bakefile, Release 1.2.5.1

make_variables_for_missing_props()
(bkl.model.ModelPart method), 67

MakefileExprFormatter (class in bkl.makefile), 90
MakefileFormatter (class in bkl.makefile), 90
MakefileToolset (class in bkl.makefile), 91
model (bkl.interpreter.Interpreter attribute), 97
ModelPart (class in bkl.model), 66
module (bkl.model.ModelPart attribute), 68
Module (class in bkl.model), 68
modules (bkl.model.Project attribute), 69
msg (bkl.error.Error attribute), 88
multifile_target() (bkl.makefile.MakefileFormatter

method), 90

N
name (bkl.api.BuildNode attribute), 82
name (bkl.api.Extension attribute), 83
name (bkl.api.Property attribute), 85
name (bkl.model.Configuration attribute), 65
name (bkl.model.ModelPart attribute), 66
name (bkl.model.Target attribute), 70
name (bkl.model.Template attribute), 71
name (bkl.model.Variable attribute), 71
name (bkl.parser.ast.ConfigurationNode attribute), 94
name (bkl.parser.ast.SettingNode attribute), 96
name (bkl.parser.ast.TargetNode attribute), 97
name (bkl.parser.ast.TemplateNode attribute), 97
name (bkl.vartypes.Type attribute), 82
names (bkl.parser.ast.BaseListNode attribute), 93
NativeLibFileType (class in bkl.compilers), 92
NativeLoadableModuleFileType (class in bkl.compilers),

92
NativeProgramFileType (class in bkl.compilers), 92
NativeSharedLibraryFileType (class in bkl.compilers), 92
NilNode (class in bkl.parser.ast), 95
Node (class in bkl.parser.ast), 95
NonConstError, 88
noop() (bkl.expr.Visitor method), 80
normalize() (bkl.vartypes.Type method), 82
normalize_and_validate_bool_subexpressions() (in mod-

ule bkl.vartypes), 82
NOT (bkl.expr.BoolExpr attribute), 72
NOT_EQUAL (bkl.expr.BoolExpr attribute), 72
NotEqualNode (class in bkl.parser.ast), 95
NotFoundError, 88
NotNode (class in bkl.parser.ast), 95
null() (bkl.expr.Formatter method), 74
null() (bkl.expr.SymbolicFormatter method), 79
null() (bkl.expr.Visitor method), 80
NullExpr (class in bkl.expr), 75

O
on_footer() (bkl.makefile.MakefileToolset method), 91
on_header() (bkl.makefile.MakefileToolset method), 91

on_phony_targets() (bkl.makefile.MakefileToolset
method), 91

operator (bkl.expr.BoolExpr attribute), 72
operator (bkl.parser.ast.BoolNode attribute), 94
OR (bkl.expr.BoolExpr attribute), 72
OrNode (class in bkl.parser.ast), 95
out_type (bkl.api.FileCompiler attribute), 85
outdir_abs (bkl.expr.PathAnchorsInfo attribute), 76
OutputFile (class in bkl.io), 89
outputs (bkl.api.BuildNode attribute), 83

P
parent (bkl.model.ModelPart attribute), 66
parse() (in module bkl.parser), 93
ParserError, 88
path() (bkl.expr.Formatter method), 74
path() (bkl.expr.RewritingVisitor method), 79
path() (bkl.expr.SymbolicFormatter method), 79
path() (bkl.expr.Visitor method), 80
PathAnchorNode (class in bkl.parser.ast), 95
PathAnchorsInfo (class in bkl.expr), 76
PathExpr (class in bkl.expr), 76
paths_info (bkl.expr.Formatter attribute), 74
PathType (class in bkl.vartypes), 82
placeholder() (bkl.expr.SymbolicFormatter method), 79
placeholder() (bkl.expr.Visitor method), 80
placeholder() (bkl.makefile.MakefileExprFormatter

method), 90
placeholder() (bkl.model.ProxyIfResolver method), 70
PlaceholderExpr (class in bkl.expr), 77
PluginNode (class in bkl.parser.ast), 96
pos (bkl.error.Error attribute), 88
pos (bkl.error.error_context attribute), 89
pos (bkl.expr.Expr attribute), 73
pos (bkl.expr.LiteralExpr attribute), 75
pos (bkl.expr.PathExpr attribute), 77
Position (class in bkl.parser.ast), 96
process() (bkl.interpreter.Interpreter method), 98
process_file() (bkl.interpreter.Interpreter method), 98
project (bkl.model.ModelPart attribute), 68
Project (class in bkl.model), 69
properties (bkl.api.TargetType attribute), 87
properties (bkl.api.Toolset attribute), 87
Property (class in bkl.api), 85
ProxyIfResolver (class in bkl.model), 70

R
readonly (bkl.api.Property attribute), 86
readonly (bkl.model.Variable attribute), 71
reference() (bkl.expr.Formatter method), 74
reference() (bkl.expr.Visitor method), 80
reference() (bkl.model.ProxyIfResolver method), 70
ReferenceExpr (class in bkl.expr), 78
replace() (bkl.io.OutputFile method), 90

110 Index

Bakefile, Release 1.2.5.1

resolve_variable() (bkl.model.ModelPart method), 68
RewritingVisitor (class in bkl.expr), 78
right (bkl.expr.BoolExpr attribute), 72
right (bkl.parser.ast.BoolNode attribute), 94
RootNode (class in bkl.parser.ast), 96

S
scope (bkl.parser.ast.LvalueNode attribute), 95
scopes (bkl.api.Property attribute), 86
secondary (bkl.api.BuildSubgraph attribute), 83
set_property_value() (bkl.model.ModelPart method), 68
set_value() (bkl.model.Variable method), 72
Setting (class in bkl.model), 70
SettingNode (class in bkl.parser.ast), 96
settings (bkl.model.Project attribute), 69
should_build() (bkl.model.ModelPart method), 68
source_file (bkl.model.Module attribute), 68
source_pos (bkl.api.BuildNode attribute), 83
source_pos (bkl.model.Configuration attribute), 65
source_pos (bkl.model.ModelPart attribute), 66
source_pos (bkl.model.Template attribute), 71
SourceFile (class in bkl.model), 70
sources (bkl.model.Target attribute), 71
split() (in module bkl.expr), 81
split_into_path() (in module bkl.expr), 81
srcdir (bkl.model.Module attribute), 68
srcdir (bkl.parser.ast.SrcdirNode attribute), 96
SrcdirNode (class in bkl.parser.ast), 96
StringType (class in bkl.vartypes), 82
submake_command() (bkl.makefile.MakefileFormatter

method), 90
SubmoduleNode (class in bkl.parser.ast), 96
submodules (bkl.model.Module attribute), 69
SymbolicFormatter (class in bkl.expr), 79

T
Target (class in bkl.model), 70
target() (bkl.makefile.MakefileFormatter method), 90
TargetNode (class in bkl.parser.ast), 96
targets (bkl.model.Module attribute), 68
TargetType (class in bkl.api), 86
Template (class in bkl.model), 71
TemplateNode (class in bkl.parser.ast), 97
templates (bkl.model.Project attribute), 69
text (bkl.parser.ast.LiteralNode attribute), 95
TheAnyType (in module bkl.vartypes), 82
Toolset (class in bkl.api), 87
toolsets (bkl.api.Property attribute), 86
toolsets_to_use (bkl.interpreter.Interpreter attribute), 97
top_module (bkl.model.Project attribute), 70
top_srcdir (bkl.expr.PathAnchorsInfo attribute), 76
top_srcdir_abs (bkl.expr.PathAnchorsInfo attribute), 76
toString() (bkl.parser.ast.Node method), 95
toStringTree() (bkl.parser.ast.Node method), 95

type (bkl.api.Property attribute), 85
type (bkl.model.Target attribute), 70
type (bkl.model.Variable attribute), 71
type (bkl.parser.ast.TargetNode attribute), 97
Type (class in bkl.vartypes), 82
TypeError, 88

U
UndefinedError, 88
UnsupportedError, 88

V
validate() (bkl.vartypes.AnyType method), 81
validate() (bkl.vartypes.Type method), 82
value (bkl.expr.BoolValueExpr attribute), 72
value (bkl.expr.LiteralExpr attribute), 75
value (bkl.model.Variable attribute), 71
value (bkl.parser.ast.AssignmentNode attribute), 93
value (bkl.parser.ast.BoolvalNode attribute), 94
value_no (bkl.expr.IfExpr attribute), 75
value_yes (bkl.expr.IfExpr attribute), 74
values (bkl.parser.ast.ConcatNode attribute), 94
values (bkl.parser.ast.ListNode attribute), 95
var (bkl.expr.PlaceholderExpr attribute), 78
var (bkl.expr.ReferenceExpr attribute), 78
var (bkl.parser.ast.LvalueNode attribute), 95
var (bkl.parser.ast.VarReferenceNode attribute), 97
var_definition() (bkl.makefile.MakefileFormatter

method), 91
Variable (class in bkl.model), 71
variables (bkl.model.ModelPart attribute), 66
VarReferenceNode (class in bkl.parser.ast), 97
VersionError, 89
visit() (bkl.expr.Visitor method), 80
visit_children() (bkl.expr.Visitor method), 80
Visitor (class in bkl.expr), 79
vs_project() (bkl.api.TargetType method), 87

W
warning() (in module bkl.error), 89
write() (bkl.io.OutputFile method), 90

Index 111

	Introduction
	Just Show Me How It Works
	Motivation
	The Bakefile Solution

	Tutorial
	Hello, Bakefile
	Example Explained
	Customizing Your Project
	Advanced Stuff

	Language reference
	Statements, blocks, literals etc.
	Values, types and literals
	Paths
	Variables and properties
	Targets
	Templates
	Conditional statements
	Build configurations
	Build settings
	Submodules
	Importing other files
	Version checking
	Loading plugins
	Comments

	Reference documentation
	Global project properties
	Module properties
	Setting properties
	Toolsets
	Targets

	Extending and developing Bakefile
	Writing Bakefile plugins
	Reference

	Glossary
	Indices and tables
	Python Module Index

